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Abstract

We consider the problem of constructing extensibb&ﬂ) - LE(R”), whereLlf is the
Sobolev space of functions withderivatives inLP andQ c R" is a domain. In the case
of LipschitzQ, Caldebn gave a family of extension operators depending,amhile Stein
later produced a singlék{ndependent) operator. For the more general class of locally-
uniform domains, which includes examples with highly non-rectifiable boundariks, a
dependent family of operators was constructed by Jones. In this work we proddce a
independent operator for all spacqus{Q) on a locally uniform domai.

Key words: Sobolev extension, locally uniform domain
1991 MSC46E35

1 Introduction

We work on the Euclidean spa&é of dimensionn > 2, and on a connected open
domainQ. Leta = (@1,...,an) € N" be a multi-index with lengtha| = } a;.
Supposef andg are locally integrable of and are related by the integration by
parts formula

fg F()(D"p() dx = (~1)° f g()B(X) dx

for all ¢ € C* with compact support 2, whereD?® = (9/9%X1)** - - - (0/0%,)™.
Then we callg the weak derivative of of ordera, and writeg = D f.

The Sobolev spacEE(Q) consists of those locally integrable functiohswvhich
have weak derivatives ibP(Q) for all @ with || < k. It is a Banach space with
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If we compare the Sobolev spaceskhto those on a subdomafp, it is evident

that there is a bounded linear mappigyR") — L (Q2) induced by the restriction

f — f|q. This paper is a contribution to the ongoing work of many authors on the
corresponding extension problem (see [8,3,2,16,5,11,12,6,21,15]), which may be
briefly summarized as follows.

Question 1 What may be said about the existence and properties of bounded linear
extension mappings : LF(Q) — LY(R") with Eflq = f ?

A simple example shows that this problem depends non-trivially on the geometry
of Q.

Example 2 Considerf(x,y) = x2onQ = {(x,y) € R? : |y| < X?, x € (-1, 1)} with

b> 1. Fora> O0ande > 0so small thab—(a+1)(2+€) > —1we havef € L, but

this has no extension ibZ*€ as the Sobolev embedding theorem implies the latter
is a space of Holder continuous functions.

Extension on Lipschitz Domains

In view of the obstruction posed by a cusp @ it is perhaps unsurprising that
the classical fiirmative results are for Lipschitz domains. The following theorem
of Caldebn [2] was the first to deal with general orders of smoothikessid was
later improved by Stein [17,18] using an entirelyfdrent proof.

Theorem 3 (Calderon) Let Q c R" be Lipschitz. For eactk € N there is a
bounded linear extension operator such that forlaf p < oo

Ex: LE(Q) — LE(R”)
with bound depending am k, p and the constants of the Lipschitz domain.

Theorem 4 (Stein) LetQ c R" be Lipschitz. There is a bounded linear extension
operator such that foranke Nand1l < p < oo

E:LN(Q) — LYRM.
with bound depending am k, p and the constants of the Lipschitz domain.

Notice that Calddm produces a family of extension operatigs one for each or-

der of smoothness. By contrast, Stein constructs a stdegleee independeeiten-

sion operator. In what follows we shall examine the existence of degree independent
operators on a much larger class of domains.



Extension on Locally Uniform Domains

Locally uniform domains were introduced by Martio and Sarvas [13], but the fol-
lowing equivalent definition is from [11].

Definition 5 A domain is(e, §) locally uniform if between any pair of pointsy
such thaix — y| < ¢ there is a rectifiable argy c Q of length at mosjx — y|/e and
having the property that for alt € y

€lz—Xlz-yl

dist(z, 0Q2) >
@9 IX—=¥l

(1)

These domains have close connections to quasiconformal mappings [4] and enjoy
a wide variety of potential-theoretic properties akin to those of the half-sices

[9]. Unlike Lipschitz domains, they may have highly non-rectifiable boundaries: the
boundary of a locally uniform domain iR" may have any dimension imf 1, n).

The extension properties of locally uniform domains were first studied by Jones,
who proved that they are precisely the domains on which BMO functions can be
extended [10], and that they have the following Sobolev extension properties [11].

Theorem 6 (Jones)LetQ c R" be an(e, 6) locally uniform domain. For each fixed
k € N there is a bounded linear extension operator such that fot &lp < oo

Ec 1 LY(Q) — LERM
with a bound depending am e, 6, k and p.

Theorem 7 (Jones)If Q c R? is bounded and finitely connected then the following
are equivalent

(i) There are extension operatafy as in Theorem 6.
(i) Qis an(e, o) locally uniform domain.
(i) 0Q consists of a finite number of points and quasicircles.

From these theorems we know both that the locally uniform domains admit Sobolev
extension operators and that they are the most general class to dB%dartain
known examples suggest that there is no simple geometric condition like that in
Theorem 7 to characterize extension domains in higher dimensions, though some
progress has been made by Herron and Koskela [7,6].

One limitation of Jones’ results is that the operai®gsare far from degree inde-
pendent. In facEy is not even defined on the spadEfiQ) for | < k. The purpose

of the present paper is tdfer an alternative approach to Sobolev extensions on
locally uniform domains that results in a degree independent operator.



Theorem 8 Let Q c R" be an(e, 6) locally uniform domain. There is a linear
operatorf — &f such that forank e Nandl < p < o

&1 LY(Q) — LIR" 2
IEFllLpeny < c(n, €, 6, K, P)IIfllLpy- 3)

The proof of Theorem 8 follows the method developed by Whitney for his cele-
brated Lipschitz extension theorem [22]. We decompose the inter{of efR"\ Q

into a union of cubes, define an extension for each cube and then sum using a
smooth partition of unity. This is the same approach used by Jones in [11] and some
of our arguments parallel his, however the proofsadisubstantially in the method
used to construct an extension corresponding to an individual Whitney cube. To
obtain a degree independent extension we need to capture the behakiop ob
arbitrary orders, and this requires quitéeient techniques than are needed when
the order of approximation is fixed in advance. The bulk of this work is found in
Section 3 and summarized in Theorem 16. It involves solving a certain moment
problem under a geometric constraint on the support of the solution, and was in-
spired by Stein’s use of a corresponding one-dimensional result (Lemma 1 on page
182 of [18]) in his construction for the Lipschitz case.

Before embarking upon the proof we warn the reader that Theorem 8 will be only
proved under the additional assumption thatas diameter at least 1. This allows

us to avoid renormalizing polynomials of degree less thém have norm zero in

Llf, an operation which is routine but adds unnecessary technicalities to the proof.
As a result the constantin (3) will grow without bound if the diameter @ is sent

to zero while all other constants in (3) remain fixed.

The author would like to thank his PhD advisor, Peter Jones, for his support and
assistance with this work.

2 Geometry

Points inR" are denoted or (Xg, X, ..., X,). The Euclidean distance between two
points is|x—Yl, the distance fronx to a setA is dist(x, A), and the distance between
two sets is dist, B). Balls are writterB(x,r) = {y : [x—y| < r}. Attimes it will be
convenient to writelB for the ball concentric witlB but havinga times its radius.

A set of the formQi(x) = {y : ly; — x;| < 1/2} is a cube of centex and lengtH. The
center of the cub® is denotedxg and its length id(Q). As with balls,AQ is the
cube with the same center @but lengtha times as large. A dyadic cube of scale
2l,j € Z, is a cube having sizel 2nd all of whose vertices lie on the latticd 72"



The Whitney Decomposition

We make extensive use of Whitney’s decomposition of an open set into cubes. A
proof may be found in Stein [18] Chapter VI, Section 1.

Lemma9 If Q c R" is open then there is a countable collectig®;} of dyadic
cubes with disjoint interiors such that

1< dlst(Q,-,aQ) <4

<—=< 4
Vnl(Q;) @
andifQ; N Qx#0
1 _1(Q)
Z < @ <4 (5)

The collectionW = {Q;} is called the Whitney decomposition<f

Notice in particular that if) is the Whitney cube af containingx then 4+/nl(Q) >
dist(Q, 0Q) > dist(x, 0Q) — Vnl(Q), so that

I(Q) > dist(x, Q) /(5 Vn) (6)

The geometry of a locally uniform domai® may conveniently be described us-

ing Whitney cubes. Following Jones [11], we say two Whitney culoesh if

their intersection contains a face of one or both cubes, and that a finite sequence
Si1,...,Sm of cubes forms &hainif S; andS;,; touch forj = 1,...,m. A chain

S =S4,...,Sn = S is said toconnectS to S’ and havdengthm. We defineW,

to be the collection of Whitney cubes ©f andW, to be those of the interior of

R™\ Q.

Connecting two cubes of comparable size

Lemma 10 LetS andS’ be cubes fromy/; that have comparable sizes and sepa-
ration, that is

IXs — Xs/| [Xs — Xg/| <C
1(S) 1(S)

wherexs andxs: are the centers @ andS’ respectively. Suppose also thég), 1(S’)
and|xs — Xg/| are all less thary. Then there are constan@, = C,(n,C, ¢) and
C, = C,(n,C) and a connecting chai§ = S, ..., S, = S’ of cubes froniW; with
lengthm < C4, and such that every cul& in the chain satisfies

i<I(Sj)<C2 <@<%

—— < — and £
C,  I(S) ~ € C, (&) 7 €

1 1 1
= < =< <C, =<
C - I(S) C C

(7)



PROOF. This lemma is a variant of Lemma 2.4 from [11], and has the same proof.
Since|xs — Xs/| < §, there is a rectifiable curve joining Xs to X with property

(1). Letzbe a point ony. If z € S (or &) then distg, 0Q) > 1(S)/2 (respectively
[(S7/2)). If not, thenjz- xs| > |(S)/2 and|z- xs/| > 1(S)/2, so by (1)

€l(S)I(S')

dist(z, 0Q) > ————
(@.00) 4Ixs — X

> C36| (S)

Conversely dis{, 0Q) < dist(xs, Q) +1(y) < 4/nl(S) + |xs — Xs/|/€. Using (4) and
(6) we see that an$; € ‘W, which meetsy satisfies (7). From the collection of
cubes meeting we then extract a finite chain joinirgto S’; the bounds (7) and
the length bound om ensure that this chain has length at most s@ji{e, C, ¢).

Connecting a small cube to a large cube

In this context darge cube is one having length comparables&g +/n. This is the
largest size of cube which may be found all along the boundary, in the sense that
any cube fronf (or even any point ofQ2) may be connected to a cube of this size

by an arc of comparable length, and thence by a chain with known structure. This
is made precise in the following lemmas, and illustrated in Figure 1.

Lemma 11 Let x € Q satisfydist(x, 9Q) < e5/(20+/n). Then there iS € W,
with I(S) > e6/(20+/n), such thatx may be connected to the centeyof S by a
rectifiable curve lying within distance of 90Q and of length at most/e.

PROOF. If x already lies in a Whitney cub® of side length at leasts/(20+/n)
then we need only connegtto the centerxs by a straight line. It cannot lie in

a larger cube as it is too close &92. Hence we assume that the Whitney cube
containingx has length less thasb/(20+/n).

SinceQ is connected and of diameter at least 1 there is a pomtQ such that
Ix —y| = 6. From Definition 5 there is a rectifiable curyeof length at mosb/e
joining xto y, and in particular containing a poirequidistant from bottx andy.
It is immediate thajz— x| = |z—y| > §/2, so atzwe have by (1)

€lz— X||z- €0
2= Xz-yl

dist(z, 0Q) > > —
( ) [X =Yl 4

and therefore by (6) th&’ > zhas lengtH(S’) > €5/20+/n.

It is now legitimate to take the first cube of lengihy/(20+/n) encountered as we
traversey from x to y . Call this cubeS. The piece ofy connectingx to S lies en-
tirely within cubes smaller tha#y/(20+/n), hence within distances of the bound-
ary. The cubes hasl(S) > 5/(20+/n) but must be adjacent to a cube with length



smaller than that, so by (4) and (5) we ha{®) < 5/(5+/n) and it is also within
distancecs of the boundary. Moreover the curve fraxo S is no longer than that
from x to z, so has length at moste — 6/2. We can adjoin to this curve a line
segment from its endpoint @15 to the centexs and have thereby connect&do
Xs by a curve of total length at mo&fe — 6/2 + €6/5 < d/e.

Lemma 12 Let Q € W, with I(Q) < €5/(200n). Then there is a Whitney cube
S* e (Wl with

1(S%)
2Vn< Q)

dist(Q, S¥) < %‘I(Q) 9)

<8vn (8)

and a chain{S* = S;,S,,...,Sy = S} with I(S) > 5/(20+/n) and having the
property that ()

€ Sj

Cn = dist(@Q, Sj) = (10)
whereC is a constant independent nfande.

PROOF. Using the basic properties of the Whitney decomposition we choose a
point X € Q such that dis, Xo) < 5+vnl(Q) and distk, Q) < 1(Q). From this
point we apply Lemma 11 and obtain a cugveonnectingx to a pointxs which is

the center of a Whitney cut@with I(S) > e5/(20+/n).

Consider the collection of cubes from¥/; that intersecy. This collection contains

a chain of cubes fromto S, so we need only see that there is an appropriate start-
ing cube on this chain and that the estimates hold. Observe that the chain contains a
cube of length at most dist(0Q2) < I(Q) and also a cube of lengttS) > 8 /nl(Q),

hence by property (5) of the Whitney decomposition it certainly contains one cube
of length between 2/nl(Q) and 8ynl(Q). Ordering the cubes along the chain be-
ginning atx we call the last cube of this leng®t. SinceS* # S we can apply (6)

and (1) toz € y N S* to obtain

€|lz—- X||z— Xs| S €lz— X
X — Xs| -2

40nI(Q) > 5vnlI(S*) > dist(z, 4Q) >

so thatz— x| < 80nl(Q)/e and therefore dis@, S*) < Cnl(Q)/e
Let {S;} be the chain frons* to S. For anyze y N S;

5vnl(S;)) > dist(S;, Q) + VnI(S;) > dist(z Q)
therefore applying the estimate (1) in the c&et S

€|z — X||z— Xs|

5VhI(S)) > dist@z 6Q) >
|X — Xs]

€ €
> Slz- X 2 é(lz— Xol = [Xq = X))



whereupon

10N

€

|(Sj) > g(diSt(XQ, Sj) - 5\/ﬁ|(Q)) > diSt(Q, Sj) _ 6\/ﬁ|(Q)
and using the fact th&(S;) > I(S*) > 2+/nl(Q) we have

10V sy 4+ 12n1(Q) < &1

€ €

dist@Q, S) < 1(S))

from which (10) follows for all cubes bi&. For the cub& we can repeat the above
computation forz € 9S rather thare ¢ S. All of the estimates are identical.

\ 2

f :
|

Fig. 1. Construction of a chain of cubes and the twisting dane

Tubes and Twisting Cones

In order to simplify some of our proofs we perform an elementary construction
that gives a region inside the chains constructed above and on which it is easy to
propagate the estimates we shall need later.

Let{S;} be a chain of Whitney cubes with no repeated cubesalle¢ the center of
the cube&5; andb; be the center of the fac®NS;. ;. We trace out a piecewise linear
curvey through these points in the order, by, a, . . ., b1, am. At each pointx € y
define a radius(x) which varies linearly between poings andb; and is such that
S(a;) = 31(S;) ands(b;) = 3 min{I(S;), 1(S;+1)}. Finally, letI” be the set of points
that lie within radiuss(x) of somex € y. The result is shown in Figure 1.

Lemma 13 Ify e I'n S; thenB(y, vnl(Q)) € Sj_; US; U Sj...

PROOF. All points x with [x—y| < 2 min{I(Sj_1),1(S)),|(Sj:1)} are inS;_; U S; U
Sj.1. However in the proof of Lemma 12 the smallest of the cubgwasS* and
had length at least ¢nl(Q) by (8).



If our chain is one of those described in Lemma 10 than th& $&ets radius com-
parable to the lengths of the cubes at its ends, with bounds depending anlg,on
and the constar@@ in the lemma. Such are calledubes

In the case that the chain connects a small cube to a large cube, asin Lemma 12, we
have instead thdt is atwisting cone The name describes the fact that the radius
s(x) is comparable to the function that grows linearly algngnd is equal td(S;)

at one end ant{S,,) at the other.

Estimation along Tubes and Twisting Cones

Part of our reason for introducing tubes and twisting cones was that these are the
type of sets on which we may iterate the classical Poaraquality to estimate the
behavior of a function in terms of its weak derivatives. We state the usual Peincar
inequality on a ball as a theorem; it is proven in most standard references, for ex-
ample it appears as Theorem 6.30 in [1], and as Lemma 1.1.11 in [14].

Theorem 14 If f € LP(B(0, 1)) satisfies
f D*f =0 forall|al<k-1 (11)
B(0.r)

thenforalll< p< o

I fllLeceiory < CRIMIVHILaeorn) (12)

We note in particular that from anfy e LE we may subtract the polynomial

PO = Y, = D@ (13

lal<k-1

and thereby ensurf(x) — P(x) satisfies (11). We calP(x) the polynomialffitted to
f onB.

Before giving our estimate for the behaviorfoflong a twisting con€ we fix some
notation. Recall thal is centered on a piecewise linear cusvand contained in
a chain of cube$S;}. The ordered vertices of, calleda; andb; in the definition
of a twisting cone, will here be denoté¢d}. There is a radius(z) at eachz € y
comparable to the size of the enclosing ciiyes z. We useB; = B(z;, 5(z;)) for
the balls around the vertices aRd(B;; f) for the polynomial of degrek fitted to
f on B;.

Lemma 15 Let{S;} be a chain of Whitney cubes as in Lemma 10 or Lemma 12, and
I" be the tube or twisting cone aroundthat is contained in the chain. L&{z) be



the radius ofl" at z € y, write zy and z,, for the endpoints of, andBy = B(z, S(2))
and By, = B(zy, S(z.)) for the balls around these endpoints.

Considerf € L{(Q). If P(x) is the polynomial of degrele— 1 fitted to f on the ball
By then there are constan@ = C(n, ¢, k, p) such thatifl < p < o

119 = PO ygs, < CASH) Y 1(S) ('I(érr))

n/p
| I Ole, a4
j=1

while forp =

1169 = Po®| 5 < C US| (15)

PROOF. Suppose k< p < o. We begin by examining a special case that occurs
along each segment of the curyelLet k = 1 and consider the set consisting of
the convex hull of the unit baB centered at the origin and a ball of radius{1)
centered at the poird. Use s(t) = 1 + At for the radius at positiota along the
central axis. This is a convex set, so smooth functions are dense in the Sobolev
functions (by an easy mollification argument) and ifi@es to prove our estimates
under the assumption théts differentiable. For eache B(0, 1) we have

1 1
f(a+(1+/l)§)—f(§):f0 %(§+(a+/l§)t)dt:fo V(£ + (a+6)) - (a+ A8) dt

from which by Jensen’s inequality and the f&gi< 1

f|f(a+(1+/l)§)—f(§)|pd§§ff1|Vf((1+/lt)§+at)|p|a+/1§|pdtd§
B B JO L
p p
< (la + ) j; fB (at’1)|Vf(s(t)§)| d¢ dt

1 dy
p p
< (al+ ) fo fB o O gt )

However the usual Poincatheorem fok = 1 states

[ Jf@-f foaxas<c [ wiepa @)
B(0,1) B(0,1) B(0,1)

10



And since the average df is precisely the zero order polynomial approximation
Po(B; f), we may combine this with (16), (17) and a change of variables to obtain

1/p
( f |f(y) - Po(B; f)|"dy)
B(a,1+41)

1/
= (f|f(a+(1+/l)§)— Po(B; f)Ipdf) p
B

1/p
< ClIVFllee) + (fBlf(an 1+ - f(§)|pd§)

1 1/p
< C|[VFllog + (18 + 2) ( fo fB ) VE(y)P (s((jt;/)” dt) (18)

If we apply the Poincar estimate (17) again, but this time on the i&ilE B(a, 1 +
A) we have

£ 1160 = Po®: D dy= £ 100 - £ 1090x["dy<ca+7 171017 dx

and in conjunction with (18) we have shown

1/p

1/p
Po(e; 1) - Po(e: 0] < 1+ 0 £ wtGPay) o[ f vy

1 1/p
A+ ( f fB( » |Vf(y)|pdydt) (19)

We think of " as decomposed into a union of sets having the geometry just dis-
cussed, sd@ = UI wherel is the convex hull ofB(z, s(z)) and B(z,1, (z.1)).
The estimate (19) applies to ealghin the form

1/p 1/p
Po(Br; ) — Po(Bia f)|sCS(z|)( B|Vf(y)|pdy) +Cs(a_1)(fB |Vf(y)|dy)

? a2\
flz- M(f f V()P dy )
2.1 JBEs) 1z — 24

<Cqa) ( f |Vf(y)|pdy)1/p + Ca) ( £ o dy)l/p

1/p
+Cl -7 (f |Vf(y)|pdy) (20)

11



and we can write

1/p
( £ 1£6) - Po(e f)|"dy)
| i - 1/p
= [ﬁ_‘f(y) — Po(Bj; F) + )~ (Po(By; f) = Po(Br_1; f))' dy]
| I:11/p j
< (JCB |f(y) - Po(Bj; f)|'°dy) + > |Po(By; ) = Po(By_1; 1)
i =1
j 1/p j 1/p
p _ p
< C; S(Z')(JCB. VE(y) dy) +C;IZ Z4] (J€ VE(y) dy)

j 1/p
<C ; |2 — 74| (ng IVE(y)P dy) (21)

where the last step uses the fact that

o s@) \PIhal
sy f 1vioray= (22 ) Tola-ar £ wioray
<CPia -2 f VEOIPdy
I

This concludes our discussion of the cése 1.

Fortunately the case of genetals not dissimilar from what we have done for
k = 1. Lety; be the arc ofy up toz; and suppose inductively that for any smooth
functiong and any balB = B(x, s(X)) along the segmeng[,, z;] we have

0 1/p
( JCB |ay) - Piea(Bo; )] dy)
j /p

RS2\ ~ 1 apa \
<c (1)) m a_ﬂ(ﬁ_lw Py @)

Note also from (13) that the components R »(B; Vf) coincide with those of
VP_1(B; f).

Returning to the case of a conical piecd akith notation as before, we follow the
same method as in (16) but for the functibaP,_,(B; f) and using our observation
aboutVP_1(B; f). Herea = zj—z;_; and 1+ = 5(z;)/s(z;-1), so that we are moving

12



on the cone fronB;_; to B;.

fB (= Pea(B: ) (a+ (L+ &) = (f - Pa(B; 1)) ()] dé
1
p _ . p
< (|al + ) fo JCBH|V (f = Pea(B; £) (L + At)é + at)|” de dt
1
— p f— ~ -V f p
(1al + 2) fo Jijll(v P2(B; V1)) (1 + )¢ + at)|” dé dt

1
<Cly-zaP [ £ [(7F - PeaB VN ) dyc
0 B(at,1+A1t)

whence by our inductive assumption appliegte Vf, and using thaat € [zj_4, zj]

1 1/p]P
< Clzj -z Iy )" 2P fo [Zm—a_ﬂ(f |vk‘1g(y)|pdy) } dt
I=1 -1

j 1/p]P
< Cl(y))*?Piz; - zj_m’[z 12— 24] ( f |ka(y)|pdy) }
I=1 Fia

since the integrand is no longer dependent.&e use this to write

1/p
(AELECHIRY
: 1/p
= (JCB |(f = Pea(B; ) (2 + ﬂ§)|pdf)
1/p
f(&) - P._(B: f Pd
< (fle| (©) - Pea(B; )@l 6)

J 1/p
+CI0)* DIz~ 21l ) 12 - 2] ( f V<E (y)IP dy) (23)
I=1 [l

13



It is clear from inductive application of (23) and a single use of the Pomntar
equality that

(ﬁm|(f - Pea(B; ) (y)|pdy)1/P

1/p
< ( 1(8) = Pea(B, f)(f)l"’df)
B1 -

m j 1/p
+C )10 Pz -2l ) 12 - 24 ( f VEF)IP dy)
j=1 =1 L
1/p
< C(s(zg)k( fB |ka(y>|de)

m m 1/p
+C (Z 1))z ~ zj_ll] PN ( f V<E )P dy)
I=1 L1

j=1
< C(I(ym)* ™ y 1z -2 |(
Y ; 1 Jﬁ

Comparing this to (22) and using the base dase 1 established in (21) we see
that (24) is true for alk.

1/p
wkf(y)wdy) (24)

-1

It is not difficult to pass from (24) to the desired estimate (14). The Betse
contained in cubes of the chdi§;}. If I} N'S; # 0 then|[}| and|S;| are comparable
and the lengthz — z_4| is is comparable td(S;). Moreover the length(y;) is
comparable td(S;) with a constant depending enbecause the length of a subarc
of y is comparable to the separation of the endpoints and we know (10). Multiplying
both sides of (24) byB,*/P and rewriting the bound in terms &(fS;) we have

It = Peca(B: Dl o,y < CASH D I(S)) (Il(éT))

=1

n/p }
]I O

This concludes the proof for the case1p < co.

Whenp = o« the argument is considerably simpler. It is a well known consequence
of the Sobolev Embedding Theorem tHat L’ (Q2) has a representative for which
Vk-1f is Lipschitz on balls contained 2, with Lipschitz norm||V* | «q). Inte-
gratingV¥f along a rectifiable curve then gives bounds for lower order derivatives
as is usual in Taylor’'s Theorem. As the uniform domain condition ensures that any
x andy with |x — y| < 6 are joined by a large number of rectifiable curves of length
not exceedin@(e)|x — y|, we conclude immediately that

|(f(9) = Po(x)) — (f(¥) — Po(¥))| < C(e. K)Ix = YIV* I
This implies both thatf(X) — Po(X)| is bounded byC|[V*f||1(So)* on By and that
|£(X) — f(y)| is bounded byC[[V*f[|I(Sm)* for x € By andy € By, so (15) follows
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and the lemma is proven.

Counting Cubes in Tubes and Twisting Cones

In the sequel we shall need to perform estimates along twisting cones and families
of tubes for each Whitney cube fro/,. This will cause most cubes frofil/; to

be counted many times, so we record some bounds on how frequently a single cube
occurs.

For the estimate on families of tubes we @xe ‘W, and constant€; andC.,. Let
F(Q) ={S; € W1 :I(S) = C4l(Q) and distE, Q) < C,l(Q)}. (25)
Any two cubesS;, S, from 7(Q) satisfy the conditions of Lemma 10 so they are

connected by a chaifT|(S;, Sk)} containing at mosC; cubes. There are finitely
many cubes irF (Q), hence

Z Z Fri(s,.50(X)

Sj,SkE'}-(Q) |

< C4(€’ n, Cl’ C2)

Lo

where Wa(X) is the characteristic function of the sat Furthermore the cubes
Ti(S;, Sk) all have length comparable t¢Q) and satisfy distQ, T)) < Csl(Q), so
chains arising from the above construction applied to th&$€X) can only inter-
sect those corresponding ¥ Q) for finitely many choices o), and therefore

< Cg(e,n, Cq, Cy). (26)

Lo

Z 15,50 (%)

QeW2 Sj.SkeF (Q) |

For twisting cones the situation isftérent. A cubeS € W, intersects infinitely
many twisting cones but only finitely many of any given scale.

Suppose that for eachfsigiently smallQ € ‘W, we have a corresponding twisting
conel’q. Fix S € W and letG(S) be the set of alQ € ‘W, such thal'o N S # 0.
Since the smallest cube in the chain contairliggs bounded as in (8) we see that
all Q € g(S) havel(Q) < C(n, ¢)I(S). By (10) any sucltQ has distQ, S) < CI(S),
and within this distance there are at mas{)" cubesQ with I(Q) = 27/I(S), so
we have shown

#HQ e G(S) : (Q) = 27MI(S)} < C(n, )2". (27)

15



3 A Function with Vanishing Moments

We prove that sets similar to twisting cones support smooth, exponentially decaying
functions with vanishing moments of all orders. This is the crucial step in defining
a degree independent operator, because the convolutidineolef with such a
function captures information about all orders of polynomial approximatidn to

Theorem 16 Let Ry > 0 andn < 1 be fixed constants. Suppdsec R" has the
property that for every > R, there isx with |x| = r and B(x, 7|x|) c I". Then there
is a smooth functiofK(x) supported o’, and constant€ and T depending only
onn, n andRy, such that

x“K(x)dx:{l if a=(0,...,0) 28)
RN 0 if aeN"\{(O,...,0)}
[KOI| < «(X)IX*™" (29)
where
1/2 1/2
k(t) = exp[— (% log %) exp(% log %) ] X (30)

Theorem 16 is a consequence of the following technical lemma, which describes
the desired geometry in more detail.

Lemma 17 For fixed constant® and jo, letr; = Rexp|2log’(j + jo)|. Fix also a
constant1, and suppose thdt c R" has the property that for eacjthere is a point
& € st andAj =S"1n B(fj,/i) with

X
{x: r<IX<rjand — eA,-} c(Cafx:r <X <rial).

X

Then there is a smooth functidf(x) supported o™ which has the propert{28)
and satisfies the estima29) with constant€C and T depending om, R, 2 and jo.

PROOF. We prove that Lemma 17 implies Theorem 16. The assumptions of the
theorem readily imply the existence of a constantith the property that at any
radiusr > Ry there isx with |x| = r and

X
{y: (1— g)r <yl < (1+ g)r é € B(M,Cn)} c B(x,nx)) cT
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From this it siffices that we can chooggsuch thatj.,/r; < (2+17)/(2-n) for all
j, andR such thaty > Ry. The former is equivalent to requiring

exp|2log’(j + jo + 1) - 2log(j + jo)]| < it L

and sincglog®(x + 1) — log® x) is decreasing fox > 1 and has limit zero ag — oo
this may be achieved by takinjg sufficiently large. WithR = Ry exp[-2 log? jo]
the latter condition is also satisfied.

The remainder of this section is spent proving Lemma 17. Considering the variation
in the radial co-ordinatix| leads us to examine the existence of smooth functions
with vanishing moments on the half-line. This is a classical problem in the theory
of moments that was first solved by Stieltjes [19,20]. An elegant proof using com-
plex analysis is in Chapter VI, Section 3.2 of [18]. Unfortunately neither of these
arguments adapts well to twisting cones, so we begin witlifarént approach that
allows us greater control over the regions on which individual moments cancel. We
then turn to the angular dependence, and the construction of certain functions on
the sets\;. These are combined with the functions from the one dimensional case
to produceK(x).

Vanishing Moments on the Half-Line

Let {rj}iZ, be an increasing sequence of positive real numbers. We partition

[ro, o) into the intervald; = [rj,rj.1). Our first goal is to construct smooth func-
tionsy; which have a finite number of vanishing moments and which are supported
on the intervalg;. From the functiong/; we will then inductively construct a func-
tion ¥ satisfying (28). This will require knowing estimates for the higher order
moments of they;.

Some Building Blocks

Consider for each € N, j # 0 the function

| j _
(e = C,exp(sz_l) se( 1,.1)
0 otherwise

whereC; is chosen so thanXj = 1. Forj = 0 setyo = 1. These functions aré*
on the real line and are supported eri[1]. It is elementary to sho@; < /3.

17



We usep; to denote the function obtained by translating and scafirtg the inter-
val | such tha; is C*, supported on;, and hasf ¢; = 1.

2r Fig1 + 1
Xi -
(Faa = 1) 7\l =1y T —

¢i(r) = (31)

Now we make our main definition for this section. Tjgh building block function,
supported on the intervdy, is

BTN
% (3) $i(r) (32)

gi(r) = 3

This definition is related to the classical Rodrigues formula for the Legendre poly-
nomials. As in the theory of orthogonal polynomials, its practical application comes
from the ease with which we may calculate the momgn®f y; using integration

by parts. We dierentiaterk and integrates;(r) as many ag times. Notice that at

each stage the boundary terms vanish because they are multiples of derivatives of
¢; at the endpoints df;, so we obtain

0 ifk <
Hik = frklﬁj(r)dr ={1 ifk=j (33)
| ('f)fh rlgi(rydr if k> j

At times we will need the following elementary estimate for thewith k > j

k\ . ;
lujud < ( j)r,ﬁi (34)
Bounds for the building blocks

As our construction will involve adding and subtracting multiples of the functions
¥ it will be important that we know how the* norm ofy; depends or).

Lemma 18 The functiong; satisfy

) < ( )j+1 (35)

Fiv1 =g

18



PROOF. By (31), (32) and the linearity of the change of variables we find that it
sufices to know a bound for theth derivative ofy:

-1 2 ( d )" ( 2r Fjes + r,-)
i(r) = — — : _
l/’]() J' (rj+1—rj) dr Xi .rj+1—rj rj+1—rj

1\ j+1 j
- Pla o)

it \(rpa-r)) \ds

Rewriting the definition of(s) as

R P L e ey BN

we may proceed by ffierentiating the product to obtain

Cj_l(dgs)ij(S) - ZJ] (:() : (dgs)kexp(z(sj_ 1)) . (dﬂs)j_kexp(z(s_i 1))

k=0

It is elementary but tedious to obtain bounds for these derivatives. The terms that
arise when we expand using the Leibnitz rule are products involgnb)t' exp(j/2(s—
1)). We compute

dis[(s—1 1) eXp(Z(sj— 1))] } (s—_l)'ﬂ exp(Z(sj— 1))+2<s: jl)'+2 exp(z(sj— 1))

Grouping such terms according to the homogeneaatiows us to describe all terms
that arise in computing thieth derivative. There are a total of2 terms and the
homogeneity of a term depends on the pattern fietentiations that produced it.
If | of these fell on the powers o6( 1) and k — |) on the exponential factor,
then the result has homogeneitk2(l) + | = 2k — I. There are(kjl) terms of this
homogeneity and it is easy to deduce that theffadents of each contain a factor
of (-=j/2)<' from differentiation of the exponentials. The @deients obtained by
differentiating the powers are no larger thak){(2

Now we estimate the size of a term with fixed homogeneity. As there is a trivial
estimate on-1, 0] we look for the maximum on [@). Observe that for a positive
value of X —|

j
2(s-1)

log

d
ds

(S_—ll)zk—l exp(z(sj_ 1))' =—(2k-1)log(1- 9 +

PN @-h
(s— 1 exp(z(s— 1))' T @-s9 2(s-17

log
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so that this expression has a unique critical point iL)@t j/2(s— 1) = —(2k - 1).

It follows that we have the bound

2(2K - )

2k-1
el
(s—1) 2(s-1) o2 if 22k —1) < |

where these maxima occur at the critical point and at O respectively.

Fork < j/4 we use the second estimate in (38) to obtain

(el =5 e )

1=0

k-

<el? (2k+ %) < g2k

(38)

Fork > j/2—1we have R— j/2 > k-1 > | and therefore the first estimate in (38)

is used.

IA
kS
2
Mz
o
—_—— /Y —

=

— |

=0
k k ok
< (% (%) (2k)ksck(kT)

Finally if j/4 < k < j/2 - 1 we use both of the above

(oolasts)| <) 2 (V) ()

=0
B k-1 k—1 i k-1
72 2K)' (=
e |:;‘_,-/z( | )( )(2)

2\ k
< ck(kT) L eI2je

This estimate is then valid for ail

In order to finish estimating (37) we need to deal with the terms involving X)
rather than ¢ — 1). Observe that the pattern offidirentiation is the same as for
the (s— 1) terms, but on [01] all the resulting terms are bounded &y'? because
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negative powers ofy+ 1) are trivially bounded by 1. We conclude by the same
method as above that

dy™ j 20
Bl -1/2 (k=]
(ds) exp(2<s+1))§e ‘
and can put all of our calculations together to conclude that
j i . k . -k .
j d —J
FARCE ;()( ool zem) (6 =olaein)
N (] J/2 k-Dek k2 j j —i il
gl () e
S =
K- \7) !
| k=0
>
k=0

J\~k 2k )
ek
< jlei?(C+j?) + 2]
< jlel(eHC+1) +2)

o

< Jle—l/z +2]e‘JJJ

Substituting into (36) and using Stirling’s formula to estimgite jle”) \/27] we
have at last

Cijlel . o 2\
Wi ()] < —=——— (4(C + 1) + 2 (—)
vil) jJe—J\/_erj( C+1)+2) (e —1j)

( c )j+l
<
Fie1 =T

where we used the fact th@f < €'/, It is easily verified that we can talke= 20.

Construction

Beginning withy we inductively subtract constant multiples of the functigns

for | > 1 so that the resulting function dnhas all its moments vanish except the
one of zeroth order. The method serves as a model for our later construction of the
functionK in Lemma 17.

Call the function before thg¢-th stage of the inductio’; and set¥, = yo. The
moments of¥; area"< = flr"‘l’j(r)dr. Itis clear tha1a8 = pok- In this notation the
j-th stage of the induction i¥j,; = ¥; - a}ﬂwm, from which the moments of

. R
¥j,1 are given by, = a - a}ﬂ,um,k.
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Observe thaam = 0 because:,1j.1 = 1. Sinceyj,1 = Oforalll > j+1it
follows that we have

1 ifk=0
a™=1:0 ifl<k<j+1
a‘J(—a}+1/lj+1,k if kK> j+l
as was intended. Eaaly; is supported on the intervd| and these intervals are

disjoint, so it is apparent that to prove tite(r) converge all we need do is estimate

the numbersa;,, and use our estimates on the functigns For this purpose we
define a sequende]} by settingby = [af] = |uo,l andb}™ = b} +b! uj.1.l. Itis

clear thata)| < b{ for all k. Assuming inductively thalaﬂ(l < blj( we have

j+1

13y

and henceforth need only consider the seque{éln}gg}.

j j j _ il
| < lay] + 13 jsalujsik < B+ by aptjeak = by (39)

Estimates

Though we do not show it explicitly, the essential idea of the following estimates
is that binomial factor in the:j, causes terms to increase very rapidlyjandk
increase (withk > ). This implies that at any stage of the induction the dominant
terms will be from the moments of the most recently introduged

Lemma 19 For j > 1andk > j, the momentg; satisfy

Hi-tk_ _ 2

< - 40
Hi—Ljdjk ~ k=j+1 (40)

PROOF. We may use the fact thgt_;(s) is an even function on1, 1] to explic-
itly compute the ternp;_ j.

S | (I’j—rj_l)fl ri+rja . ds= _(r,-—rj_l) r+rja
Him = (i - 1) 2 L0 rj—rj1 X9 ds= {7 rj—rj1
By the symmetry ofp;(r) around the midpoint of; and the fact that*~ is an
increasing function we have the bound

o k K=j k rj+1+rj k=]
#J’k_(j)ﬁr ¢J(r)dr2(j)(T)

and we estimatg;_,x using the upper endpoint of the interval:

k kojal K ) kit
Hj-1k = (j - 1) fljlr ¢ 4(r)dr < (j ~ 1)rj .
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Combining these we have

( k )rk—j+l
Hi-1k < i-1) |

Mi-LiMik N':)(%)(%)k_’
1 2 2\
Ck—j+ 1(fj +r,-_1)(r,-+l+r,-)

D
“k-j+1

N

Lemma 20 The sequenckl,, satisfies

i
bl < &0l Myl < € | [yl (41)
=0

PROOF. We expand** from its definition to obtain

i+l _ i i .
bk = bk + bj+1|ﬂj+1,k|

o .
= b7 + by il + bl ek

= by + blluaxl + bjluokl + -+ + bl ljs1x
= |uoxl + bYluaxl + bluaxl + - - + bl 1414l (42)

and see that we must deal with a sum of terms of the bypu /. Again applying

the definition we havé| .41l = bj,, — bj; < bj,,, and in conjunction with the

inequality (40) from the preceding lemma we obtainlfer1

_ _ 2
bl el < 0y el 1kl (—)

k-1
2
< b:+1llul+l,k| (m)
inductively
j 2j—|+1
< bt (5= =55

The same method applies to estimate the first term in (42) because (40) implies
luoxl < (2) loalluand = (&) bl

Now we need only substitute into the sum (42) to find that wite j — |

j +1 i
L 2Mik - j - 1)!
b, < bl lujiad [1 + Z (k= j +m)!

m=0
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and in particular

m+1

bj:; < bj+1|,uj+l j+2| [1 + Z ( 2)|] ezbj+1|/1]+1 j+2|

which proves the first assertion of the lemma. The second follows from this using
induction and the deflnltlob0 |01l

Properties of¥(r) = lim ¥;(r)

Recall that the function¥;(r) were defined inductively by

Po(r) = wolr).  Wialr) = ¥j(r) - al, () (43)

The functiongy(r) are defined on the disjoint intervals so it is immediate that the
¥;(r) converge pointwise to a functiok(r) on| that can be bounded by controlling
laj, ¥l By (39), (41) and the fact that .| < (I + 1)r, from (34) we obtain

i i
8ol < bl <& | |l <G+ 1! [ 1.
1=0 1=0

Multiplying this by the bound for,, we found in (35) yields for € 1.,
j 2 j 20 ¥
Y(r)l < la; i1 < €e(j+ 1) nil———| . 44
O < o <+ 1| [ ] ((rm_ w) (44)
It is not hard to discover that the rate of growth of the sequéng¢eletermines the
bounds available from (44). The choice= Rexp|2 log(j + jo)| from Lemma 17

is close to optimal, and we record the corresponding estimate as a lemma.

Lemma 21 With{r;} as in Lemma 17 angh > 8 we have

-1 j+1
( ) < exp(C + 2jol0G?(j + Jo) ~ 2(j + jo)log(j + Jo))
(rj+1 - rJ)
(45)

_:1
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PROOF. For notational purposes it will be convenient for us to work with the
logarithm of the above quantity. The relevant estimates are

log(rj.1—1j)
= log|T (exp2log(j + jo))) (exp(2l0g(j + jo + 1) = 2l0g(j + jo)))]
> log|T (exp2log(j + jo))) (210G(j + jo + 1) = 2log?(j + o))

(log(j + jo+ 1)(j + Jo)) (|09(1+ j Jrljo))]

=logT + 2log?(j + jo) + log 2+ log

> logT + 2log?(j + jo) + log 2+ log(2log(j + jo)) + log Iog(1+ j +1j )
0

> logT + 2106(j + o) + log 4+ loglog(j + o) + |og(j'°f’j )
0
> logT + 2 Iogz(j + jo) + loglog(j + jo) + log(4log 2 —log(j + jo) (46)

and for the product term

j-1 j-1
D logr = jlogT +2 > log(l + jo)
0 0

j+jo
sjlogT+2f log® x dx
jo
= jlogT + 2(j + jo) Iog(j + jo) — 4(j + jo)log(j + jo)
+4(j + jo) — 2jolog® jo + 4jol0g jo — 4jo (47)

Combining (46), (47), and the Stirling Estimajte< c+/jj'e™ produces

(& 20 \**
ool ] (2255

<logc—j+(j+1/2)logj+ jlogT + 2(j + jo) log’(j + jo)
—4(j + jo)log(j + jo) + 4] — 2jolog” jo + 4jolog jo
—(j+)logT - 2(j + 1) log’(j + jo) — (j + 1) loglog(j + jo)
- (j+1)log(4log 2 + (j + 1)log(j + jo)

<logc + 2jolog?(j + jo) — 2(j + jo) log(j + jo)

becausgg > 8 > €. Inserting the constantfor the Stirling estimate we obtain the
conclusion of the lemma wit8 = log( V2re).
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Lemma 21 may be combined with (44) to produce an estimate vallgl on

log '¥(r)| < log(lal ™Iy )
< 2j -2+ C+2jolog’(j + jo) — 2(j + jo) 10g(j + o)
<—(j+jo+1)log(j + jo+1)

for all sufficiently largej. However log < logT + 2log?(j + jo + 1) on lj, so we
see that for all stliciently large values of

1 r\"? 1 r\"?
log|¥(r)| < — (5 log T) exp(é log ?) (48)

This is certainly stficiently rapid decay to ensure integrability against the polyno-
mials, and an application of the dominated convergence theorem shows

1 ifk=0
“P(r)dr = li fk\y dr = 49
fr (r)dr jm fr (r)dr 0 ifk=123,... (49)

so that we have found a smooth function with vanishing moments and exponential
decay on the half liné. Our method is cruder than some of the known techniques,
see for example Lemma 1 on page 182 of [18], and we pay a price in the rate
at which the function decays. In compensation we have gained substantial control
over the regions in which cancelation occurs for individual monomials.

Functions on Subsets 8f1

The functionsy;(r) can be used to select for the radial growthbut inR" there

are many monomials with this rate of growth that need to be treated separately.
This is achieved by constructing functions on a fixed subset of the unit sfere

with the property that they vanish when integrated against any monomial except
the specific one desired. In our construction we work with angular variables rather
than the restrictions of monomials 83-2.

Functions on an Arc of!

Lemma 22 Let® be an arc of angular lengt{®| in the unit circleS*. For a fixed
J € N and for each € Z with |l| < J there is a smooth functio@, () with support
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in ® such that

w1 ifk=1
l;aww O|9‘{0if|k|gJano|k;e| (50)
C 2J+2
Gi(6)l < (@) (51)

PROOF. Without loss of generality we may identify with the interval [Q]®]] in
the angular variable. Let andl be fixed.

Partition® usingl; = (2j+1)/0|/(4J+2). For eacty € [_—|®|/(4J+2), ®]/(43+2))
consider also the partition translateddaywriting z; = €4 we define the Lagrange
interpolating polynomials corresponding to these partitions

2J 2]

—_ — ¢ .
Pid= || 225 Pu@= || g =P,

. 7. _ do
k=0,k#j ) % k=0,k# j €9zj — €7

For all integersk with |k < J we see tha€’*¥’ is a polynomial of degree at most
2Jinz= €’ soitis determined by its values at the points of the partition and

23 2)
g3+ _ vk _ Z(ei¢zj)(3+k)Pj’¢(Z) _ Z g+ p, (0=
j=0

j=0

Multiplying by e 0+ and integrating over [@r] we have

21 2r 2]
fo kN0 g9 — f(; Z O+ griIHNop, (=)
j=0

so that setting
g1 +¢)

2n

21
aj(¢) = f Pj(é(9—¢))e—i(J+I)9 do
0

we obtain

2] .
S a1 k=]
Z 0 ifO<lk<]

which may be viewed as the solution to a disctretized version of the problem on the
partition{1; + ¢}. We can now complete the proof by integrating against a function
n(¢) € C= that is supported of-|0|/(4J + 2),|0|/(4J + 2)]. Write 6 € ® in its
unique formg = A; + ¢ for ¢ in the given interval, and s&;(0) = a;(¢)n(¢). This is

a product of smooth functions on the intervils— [0©|/(4J + 2), 1; + 0|/ (4J + 2)),

and at the points where these intervals meet we see/(#pand all its derivatives
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are zero, s@, is smooth. Moreover

1j+101/(43+2) _
f Gi(0)e"’ do
A

i—1©1/(4J+2)

2J

f@ G(6)€" dg = Z

=0

2J |©1/(43+2) _
> [ s s
j=0 %"~

101/(43+2)
1 k=1
|0 ifo<k<J
With this definition ofG(0) it is easily verified that

2m
o< O [Tipyeyian 52

and since we may choogewith |n(¢)] < C(2J + 1)/|0|, we can establish (51) by
estimatingP;. All terms in the numerator d?; are bounded individually by 2 far
on the unit circle, and the denominator is clearly largest for the pasé@+ 1 when
we obtain

2] 2J+1 2J+1 2J+1
] 2 ] 2341,.2] ]
L —7) = N> |—— 2nJ>e ™ > 2ne| —
k_ol_ij(z‘ %) (43 T 2) S (43 T 2) = 7| Ge

where we used thatl > vV2rJJe” andJ/(2J + 1) > 1/3. From these and (52)

2J+1 2J+2
G(6)] < C(2J+1)(1_2e) S ( C)

4n2¢0| \ 10| |©]

Functions on subsets &f1

We use the coordinate systemy,(...,x,) on R" to define generalized spherical
coordinatesd, . . ., 6,-1) on the unit spher&"! according to

Cc0SH4 if j=1
& ={cosf; [I\_ising,  ifl<j<n
1 singy if j=n

Notice thaté; € [0,x] for j < n— 1 while 6,.; € [0, 2r), and that the Jacobian
relating the new coordinates to the oldJs= E;f sin"*1¢,.

Suppose we have an angular cube, i.e. a set of the f#m ..,6,-1) : 6; € O;}
with each®; an arc of the same angular length. We {@gfor the length of the
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cube. Ford € N and a multi-indexr = (a1, . .., an-1) With all || < J, letG,, () be
as in Lemma 22. The product of these functions has the properties

Llﬁaw)

(ﬂ é”ﬂ’l] d6; - - db_q = ﬂ f Ga, (6)€9° db;

1 fa=p
|0 ifsomeg; < Janda # 8

n-1 2(3+1) C 2(n-1)(J+1)
< =|—

U (|®|) (I@)I)

j=1

In what follows we wish to integrate with respect to the restrictiofix) of dx; ... dx,
to S"* rather than with respect to the angular variables, for which reason we define

n-1
rl G(lj (91)

j=1

1 -1
azgﬂew)
=1

It is not difficult to show that a set of the forB(&, 1) N S™* supports functions of
this type, and that we may assugfe> CA"-2. Observe first that

n-2
T = ]—[Isinekl"‘k t> (]_[ |Sm9k|) fn 1t fﬁ)(n_m (53)
k=1

and thatie? | + £2 > ¢;4%) N (B(é, 1) N S™1) o B(£, cp4) N S™ for some absolute
constantg; andc,. This latter set clearly contains an angular cube of length at least
cz(n)A and we obtain the bound @i from (53). We summarize our findings as a
lemma.

Lemma 23 Let A = B(£, 1) N S™ where¢é € S™ andA < 1. Fix J € N and
leta@ = (@i,...,an) satisfyle;| < J for all j. Then there iH, € C=(S™?) and
supported om\ such that

i 1 ifg=a
fsn_l Ha() eXp[l ;,8,-91-] dor(X) = {O if some|;| < Jandg # « (54)

C\(-1)(23+3)
ms@)
[Hal 1
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3.1 The FunctiorK (x)

Building Blocks and Bounds

The hypothesis of Lemma 17 givEs= UI'j where

X
I'j= {rj <X S, X € Aj} and Aj=S""nB(, )

with A independent of]. For eachj and multi-indexe with all |aj] < j we set

J = 2j + 2 and apply Lemma 23 on; to define functionsd;,. Let the functions
¥(r) be as in (32) and set

F(ja)(r’ é::) = lr//J (r)HJ,a(é:)

These functions ar€>, supported oi’j, and by Lemmas 18 and 23 we have

C (n-1)(4j+7) 20 j+1
Fooa(r, &) < (_) 55
Fua(r &l < (7 (r,-+1_r,-) (55)

If we denote the moments with respect to the functide’ by

M(j.a)(kp) = fR ) F(io(r, O)re® dodr
then we derive from (33) and Lemma 23 that

0 if some|B| < 2j+2andB # a, orifk < |
M(j,a),(k,ﬁ) =<1 If,B =a andk = J (56)
Hik ifﬂ:aandk> J

In the remaining case where | > 2j + 3 andk > j we have from (23) that

C )(n—l)(4j+7)

Moy < 1k (—

1 (57)

however in what follows we will only be interested in those momewts, s for
whichk > max |8|. For these we usle> 2] + 3 to rewrite (57) as

4(n-1)(k-j-1)

C
IMGayte)| < Mk (;) : (58)
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Construction

As in the one dimensional case we inductively construct a function with vanishing
moments. SeK°(r, 6) = Foo(r, 8) and define

Niy = fR KI(r e)re® dordr (59)
n-1
KIt,e) = Ki(no) = > > Nl Faa(.6) (60)
1=1 |y|<j+1

so thatN/** = 0 for all 8 satisfying|| < j+ 1,1 = 1,...,n— 1. By (56) the

(j+18) )
functionsF .1,y do not dtect the momentB\I(‘IZBl) for k < j, and consequently

N

- {1 ifk=0and8=(0,...,0) (61)

®) "0 ifk<j+landgl<j+1lforl=1,....,n—1

There are finitelyF;, for eachj, all of which are supported dry. Since the setF;
are disjoint the function&!(x) have a pointwise limit functiofK(x) supported on
I'. We show this limit is integrable against polynomials and has vanishing moments.

Estimates

Our model is the estimation scheme for the one dimensional case. Notice that the

moment sequendﬁ(jkﬁ) evolves according to the induction

n—

Nj+1 — Nj _

j
k) = Nkp) Z NG+ 1.0y Mi+10).08) (62)

1
I=1 |ayl<j+1

We are only interested in moments ) for which k > max |3]. In this situation
we may compare (56) and (58) to see that all of the momits..) «5 occurring

in the sum satisfy
4n-1)(k-j-2)

C
|M(j+1,a),(k,,6')| < Mjsrk (E) (63)

It is also easily seen that the number of terms in this sum js+(3)"*. These
observations suggest defining a new sequence by

PY = max{|M(0,o),(k,ﬁ)| ‘Bl <kforalll=1,...,n- 1} (64)
Co\A-Dk-i-2)

Pt = Pl Pl (52) (65)

whereC, = 2C is twice the constant in (63) and is fixed from here onward. Our
previous work shows th&k, depends only upon the dimension
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The benefit of this new sequence is that it dominates the seq%@ut will be
much simpler to analyze. We record this as a lemma.
Lemma 24 For all j, k, andgwith|3] <k, 1 =0,...,n— 1we havegN

(kﬁ)| = PIJ<

PROOF. For j = 0 this is obvious from the definition. Assuming the truth of the
estimate for all superindices up jave proceed inductively, looking at two cases.
If k < 2j + 4 then|8|| < 2j + 4 and so by (56) alMj;1,4) ks = 0. Therefore

(kﬂ) Z Z N(j+la)M(J+1a’)(k,3)

=1 |oy|<j+1

|Nj+1

j i _ pitl
kp)l = N < P < Py

If k> 2j + 5 we use the bound (63) to obtain

j+1
INis! = [Nies) Z Z N+ 1.0y MiL0).0c8)
I=1 |ai|<j+1
=t 4(n-1)(k-j-2)
J J
<INkl + 1 ) Nsaw|mens(5)
=1 |o|<j+1
4(n-1)(k-j-2)

i . A C
< PL+ 20+ 3Pl 5)
4n-1)(k-j-2)

Co
< PJ + PJ+1ﬂJ+1k( 1 )
— P|](+1

In the last step we used thlat> 2j + 5 whence & - j — 2) > 4j + 12 and so
(2j + 3)"is certainly dominated by(Z1#i+12) — 24n-1)k-j-2)

Our estimates forPlj(} closely mimic those for the one dimensional case. The key
result is

Lemma 25 The gf-diagonal terms of the sequenﬂé(} satisfy the estimate

| A1)
PlLi<C g l—[ﬂll+1 (66)
=0

CO 4(n-1)
whereA = (7) andC is independent afiand A.
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PROOF. ExpandingPlj(+l from the definition (65) we have

P = Pt Pt A

= P+ Pl AT 4 P g AN
: | (67)
= PR + Plua kA + Popp A + -+ Pt AYT2 (68)

From (65) we se®,,, = P|;1 + P, "*,1 whenceP| ™1 < P},,. Using (40) and

this repeatedly we estimate the general term of (68)

2
Pl ™k < (m) P a1 1414 1

2
< (m) P:+1jl|+1,k

(.2 2 2 \pi
(k=1 k=1=z) k=g ) T

_ (k= j-y-

Ko ki (69)
It is also straightforward from (56), (57), and (40) to see that
Pck) = maX{|M(O,O),(k,ﬁ)| (Bl <kforalll=1,...,n- 1}
< A7(§) %114
so that applying (69) for the case- 1 we have
PO < A7 k-j —k!l)!2(1'+1) PLl,qu’k 70

Now we may substitute the estimates (69) and (70) into the expression (6E§;)LJfor
and obtain

j+1

P|j(+1 _ PE + Z P:—lluI’kA(k—I—l)
I=1

. ir j+1 . i+
| k=i —kll)!2“ S J(; 1)I!)f“ MR

=1

i
Pj+1ﬂj+1,k
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We only need this result for the cake- j + 2 where it reduces to

. [ A720+D) L o) i-1+D)
j+1 S
Pj+2 < (+2) + . G+2-D jr1Mi+Lj+2
_ >A72(J'+1) 1 j+l (2A)m j o
TlGr2 ToAa L T |t
| m=1
1 i .
_AeZAP}+1ﬂj+l,j+2 if ] = 6

IA

1 o
(2A7+ ﬂeZA) Pl if j<6

Providing A > 10 the above factor is bounded bg?{/A) independently ofj, so
inserting a small constant to resolve this case we can inductively reduce to

- EZAj j+1 eZAj j+1
PG < Cor P n/ll,l+1 <C= l—[#ml
=1

Properties of the Kernel

OnTj,1 we use (60) and the fact that the only non-zEfg,(r, ¢) havel = j + 1 to

see that
n-1

RO ==2, D) NiapFia(.8)

I=1 |oy]<j+1

By (24) this impliegK(x)| < (2] + 3)"*P!_,|F(j+10)(r, €)|, S0 that substituting the

j+1

bounds (55) and (66) and writing both in termsffthen using (34) gives

e2A(-1) A\t 20 j+2 |
INES (24(n—1)) ( ) l—['“"'”
1=0

[K(x)| < C2j +3)**
rj+2 - rj+1

j+2 ]
o e by et

T A rj+2 - rj+1 =0
C n " 20 \*?
= C i | Tr (_)
AN+ ]:0[| ——

This is now very similar to the situation encountered in our one dimensional con-
struction. Withr; = T exp|2log’(j + jo)| we can directly apply Lemma 21 to ob-
tain for x € T

log|K(¥)| < C - 7logA + 2A(j - 2) + 2jolog?(j + jo) = 2(j + jo) log(j + jo)
<-(j+jo+1)log(j+ jo+1) (71)
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provided j is suficiently large. As logx| < logT + 2log?(j + jo + 1) on Iy, we
obtain

3 1 X 12 1 ] 1/2
log|[K(¥)| < _(é log ?) exp| 5 log = (72)

for all sufficiently large|x|. This rate of decay ensur&x) is integrable against all
functions having at most polynomial growth in the varialeand by (61) and the
dominated convergence theorem we have

1  ifk=0andg=(0,...,0)

. (73)
0 if ke N\ {0} and all|g| < k

f K(r,&)rke? do(6) dr = {

Since any monomiat® may be written
xe =1l Y ge
B

wherer = |x| and eaclB occurring in the sum satisfigg| < || forl = 1,2,...,n,
we see thaK has vanishing moments of all orders. Xsis real-valued the same is
true of the real part R&(), so defining

Re(K (X))

K(X) = |X|n—1

we have thakK € C*(R") is supported o and

1 ifa=(0,...,0)

fRn K(X)Xa dx = ‘][Rn Re(IZ(X))XadO'dr = {0 if @ € NP \ {(0 L O)}

Comparing (72) with (30) we find thaK(x)| < |X*™"«(|x|). This completes the
proof of Lemma 17 and therefore Theorem 16.

4 Extension on a Whitney Cube

Given f € LY(Q) andQ € ‘W, we define a functio@qf on (17/16)Q and identify
some of its properties.

Definition of the extension

Let ¢(x) be aC> cutdf function such thap = 1 on{dist(x, 9Q) < A} and¢ = 0 on
{dist(x, 0Q) > 21}, wherea depends only on, € ands. It is clear from the Leibnitz
rule that

g Fllpy < CN, €I fllLpy
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for all f € L{(©2). Moreover an extension @ff toR"\ Q also extends . It follows
that to prove Theorem 8 we need only treat the functions supportedifedn
particular we henceforth assume tifats 0 on all Whitney cube§ € W, with
[(S) > €5/(100+/n).

Denote the Whitney cubes frofl/, with 1(Q) < €6/(200n) by W3. On these we
will define Eq(f) by convolution against a function of the type in Theorem 16, but
first we need some preliminaries.

Corresponding t&@Q we have a chain of cubd$;} as in Lemma 12 and a twist-
ing conel’q contained inUS;. We translate the centeg, of Q to the origin and
rescale byl(Q))™%, using tlldes to indicate the scaled quantities. For exarﬂ@le
(I(Q)) (g — Xo) is a twisting cone centered at the origin.

From (10) we see that at distancdrom the origin there i/ Wwith || = ¥ and

B(Y, nlyl) c f"Q providedr™e [Ry, Ry(1(Q))7}], whereRy, R, andrn depend only on
n, e andg, and we can tak&; = 5/10. By adjoining a piece of a cone f@ we

can make this property true for all=" Ry. Let B(Y, y|) be the ball mFQ at radius
91 = Ru(1(Q))~* and define

. Rl Ry X
Iy = (FQ n {RO <% < I(Q)}) U {x. 1% > Q2 | 700 © B(y,nl)’I)}

In keeping with our tilde notation we havg, = I(Q)(f“g + Xg), and the result of
this construction is shown in Figure 4.

Fig. 2. The sef’y

We record a trivial consequence of Lemma 13.

Lemma26 If§ e fQ is such thalxq +1(Q)y) € I'qNS;, then for anyx € (17/16)Q
we have(x + 1(Q)Y) € Sj-1 U S U Sj;1.

Now Theorem 16 applies lﬁé S0 we have a smooth functi(ﬁb(y) supported on
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Iy, with Ko@)l < «(§)I51*™ and vanishing moments

o |1 ifa=(0,...,0)
LnyKQ(y)_{o if @ € N"\ {(0,..., 0)) (74)

whereC andT depend only om, € andé. Notice that ifx € (17/16)Q andy € S;
then by Lemma 26 and the linear growth (10) we have
I(Q) 1(S)

(T = (I(sj))n_lk(@)' (79)

We wish to define&€q f as a convolution of andKgq, but must first arrange thdt
is defined on all of G,. This is done by setting

f(X) if [X = Xol < Ry
fo(X) = 76
o) {0 otherwise (76)

which is a smooth continuation dffrom I'q to I'; because the Whitney cubes that

intersect' at radiusR; have length at leag®/(10+/n) and thereforef = O there
by assumption. Now fox € (17/16)Q let

§ fo(x+ QK@) dy  if Qe Ws
0 if Q € Wz \ (W3

Eof(X) = { (77)

By Lemma 26 this only involves the values & on a subset obS; where we
know fq = f. In particular it would sffice to integrate ovey € I'g becausdq =0
whenye I'; \ T'g, so forQ € W5 we may write

Eof(x) = fr f(x+ 1(QKo() d. (78)

Useful Estimates foK o

To assist in the flow of the proof and avoid repetition we list some estimates for
sums and integrals d{q.

Lemma 27 With«(t) as defined ir{30) we haveC = C(n, ¢, 6, ) such that

> 2k(2) < C2(2M)

j=m
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PROOF. By (30) there are constants, ¢, andcz depending only om, € and?,
such that

Z ZQJK(ZJ) < quK(Zm)le EXD[CZQ('[ _ m) _ C3 (tl/ZeC3t1/2 _ ml/zec3ml/2)] dt
j=m m
= 21k (2")cy f eXp[Cqu— Cs ((s+ m)1/2eC3(S+m)”2 _ rnl/ZeC3ml/2)] ds
0

= 27"(27)1(m. q)

wherel(m, g) is finite for anym > 0 andq € R and depends continuously om
However ifm > c;2 then convexity implies

1/2 /2 /2
Ca(s+ m)Y2e=5 ™ _ coml/2gsm™ > o535 g

so that in this casé(m,q) < €°I(0,q) and the result follows witlC equal to the
larger ofe®l (0, g) and the maximum of(m, g) overm € [0, c;?].

Corollary 28
| [Ra®)] < Cln.e.0
Rﬂ

PROOF. Integrate radially by dividingR" into concentric annuli from radiug 2o
211 As [Ko(%)| < «(I§)I71*" and is supported orRp, o), whereR, depends om,
€ ands, we see that

f |Ko®|d¥ < C(n, €, 5) Z 211 (211
RN =

and the result follows from Lemma 27.
Estimates for Individual Cubes

The following lemma allows control of the behavior& on the cube.

Lemma 29 There are constantS = C(n, ¢, 6, k, p) such that

DI g < C[D f@| s if 1< P <o (79)
QeWs
||D08Qf|||_oo(Q) < C||Daf|||_oo(g) if p=oo (80)

PROOF. The estimate is trivial for those cubes whéxgis identically zero, so we
may restrict our attention tQ € ‘W;. As f and its derivatives are locally integrable
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andKq, has rapid decay we mayftirentiate within the integral (78) to obtain

D*Eof(x) = f D f(x + (QF)Ro() 0¥ (81)

I'q

Applying Corollary 28 tof € LE(Q) disposes of the cage= oo.

|D*Eqf(x)| < ||D* f

L(Q) LJKQ(VHC‘S‘/

<Cp*f||ue

with a constanC = C(n, ¢, 6). For the remainder of the proof we will therefore
assume that ¥ p < co.

By Holder’s inequality and Corollary 28 applied to (81) we obtain after a change
of variables

D& f(X)|° < (fr
<C f D" £ (x-+ Q)" |Ro®)| dF

C . _
Qr LWDW”Z)'[) KQ(T(_@X)

Using (75) to estimat{éZQ((z— x)/I(Q))| for pointsz € S; andx € Q this becomes

1

-
D (x+ 1(Q)] Ko ()| dy) ( fR |Re®)] dy)

dz

eg 1P 1 Q™ ('S)\ [ 15 ea°
D 8Qf||LP(Q)SC|(Q)nLZj:(@) K(@)LJD f(2)|"dzdx

Q\" (I(S)) e ralD
<<(isy) “ligy) [ Iprreale

I

because the integrand is then independextoQ.

It is now possible to sum over &l € ‘Ws. LetG(S) be the set of all cube® € W
such that the twisting cone correspondingtantersects the Whitney culiof Q.
and recall (27) in which we bounded the number of cubes ofl§@e= 27™I(S) in
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G(S) by C(n, €)2"™. This yields

: Q)™ (18D (e
S loeetlig e Y 3 () <(igy) [0 @l

QeW, QeWs Sjnlg

) 1@\ (I(S)
<c > |p f(Z)HEp(S)Q (I(S)) (l(Q))

SEWl

<C Z ||Daf(z)|||r_1p(s)( nm2—m(n 1)K(2m)]

SEW]_

<C > ot @) e

SeW,
= C[ID"f @[/ yqy

where in the penultimate step we used the bound from Lemma 27.
Estimates for Adjacent Cubes

Our goal is an estimate needed to prove compatibility of the extensions for pairs of
adjacent cubes.

Lemma 30 Let N(Q') be the collection of cubes frofid, that are adjacent t@'.
If @ is a multi-index witHa| < kthen forl < p < o

Z C(lar —,3|)p|(Q')_|a_ﬁ‘p”Dﬁ(8Qf - Sq f)”IF_)p(Q'm(N/lB)Q)

QeW; QeN(Q') 0<B<
<C &8,k P|VFD o (82

while for p = co we have foix € Q

Q)" P|DP(Eqf(X) — Eq F(X)] < CIIV*Fllooy (83)

PROOF. If either Q or QO is in ‘W, \ ‘W3 then their adjacency ensures that both
have length at leasts/(50n). In that case (8) shows that all cubes in the chains
coveringl'g andT'o have length at leasteg/(25+/n). Our assumption on the sup-
port of f then guaranteet = 0 on the twisting cones, whenég, = 0 = Eg. No
estimate is needed here, so we henceforth assumebatidl Q' are in“Ws.

Recall that the twisting conEq corresponding t&@Q has a central curveg and
at eachz € yq a radiuss(z). The initial point ofy is calledz, and the ballBy is
Bo = B(2, S(2)). Analogous definitions are made fgtz,, andBj,. Before Lemma
15 we defined the polynomial fitted to a function on a set; here wBddte the
degreek—1) polynomial fitted tof on By andPq be the corresponding polynomial
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for f on By It will be convenient to denote convolution with the scaling parameter

1(Q) by
g+ Ko(¥) = N g(x + (QF)Ko(H) dy (84)

and to express theftierence to be estimated as

Eof (0-Eq f(¥) = ((fo—Pq)*Kq)+(Po*Kq)—(Pg *Kg)-((fo —Pg)+Kqg). (85)

If 1 < p < oo we take the derivativ®?, the p-th power, and the integral over
(Q N (17/16)Q). Using the fact that there are only three terms in the sum we have

|| Dﬂ(SQf - &g f)”|F_)p(Q'n(17/1€‘>)Q)
~ p
< C(p)HDﬁ((fQ — Po) * Ko) LP((17/16)Q)

~ ~ p
+C(p)|[D#(Po+ Ko - Py + Ko) o)

p
LP(Q)

+C(p)| P (T -~ Po) + Ro)

The two types of terms in this expression are individually estimated in Lemmas 31
and 32; substituting from these completes the proof in the case & .

Whenp = co we directly apply (85) and the> estimates of Lemmas 31 and 32.
The result has an additiong)’)< factor, but this is bounded becausge< k and
the cubes are frord/;.

Polynomial Terms

Lemma 31 There are constaniS = C(n, ¢, 6, k, p) such that forl < p < o

> > 2 QR DA(P x Ro = Po Ko, o, < CIT T ey

Q' eW1 QeN(Q) 0<sB<a

while forp = o

Q) #|DF(Pg  Ro - Po «Ro)

e = CIPI O (@)

PROOF. Expanding the polynomiaPq(x + 1(Q)Y) as a polynomial if(Q)y and
using the property (74) of the kerniéh we see

Po * Ko(X) = fR Polx+ I(QF)Ko(5) dF = Po() (86)

Similarly Po #Kq (x) = Po(X) and it siffices to estimate terni®’(Po—Pq )| o)
At this point we could appeal to Lemma 3.2 of [11] in which precisely this is
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proved, but for the convenience of the reader we instead sketch a proof using
Lemma 15.

From (8) and (9) we see that the diameterBgfis comparable both tfQ’) and
to dist@Q’, B). This ensures that the finite dimensional Banach spla@(@’) and
L (B;) have equivalent norms, so we may write

||DB(PQ - PQ’)“LP(Q') = C“DB(PQ - I:)Q')“LD(B(’))

< |[PF(F = P oy + [D°(F = Py
< Cg(z))k-W”V"fHLp(BS) + ||Dﬁ(f - PQ)”L"(B&) (87)

where we have used the Poinganequality (12) orB;. Now D’Pqis precisely
the polynomial fitted td?f on By. Let {T;} be the chain of cubes connecting the
centers of the ball, and B;. By Lemma 10 we have a bound on the number
of cubes in the chain and know that all of them satiéfy < I(T;)/I(Q) < C.
Restricting to the cased p < « and applying Lemma 15 yields

o b1 N gy (1007 o
IP2(f = Po)] g < CU(Tw) jZ:;I(TJ-)(,(T])) (V]

<CUQ Y IV E Wl

=1

After combining this with (87) we may useditler’s inequality and the bound on
the number of cubes in the chain to estimatetkté power by

m
ID°(Pq — Py < CE @) PPV 11y g,y + C UM 3 VK E O] r,
j=1

<CUQY P Y IV WI[Cwr, (88)
j=1

where we have also uset{z) < CI(Q).

To perform the summation in the statement of the lemma we need the estimate
(26). It is apparent that for appropriate choices of the constants in (25) our chain
{T,} joins cubesS andS’ from ¥(Q’), whereupon we may calculate from (88) and
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(26)

Z Z Z Q) #P|[Pq * Ko — Po * Koy,

QeWs QeN(Q) OsB<a

<C 3 D QYRR BT S I g

QeW; 0<B<a SSeF(Q) TI(S.S)

<C DD D IV IR (@) P
QeW3 S5'eF(Q) Ti(SS)

<C )y Dy ) IV
QeWs3S,SeF(Q) Ti(S,S)

<C > IV¥F Iy = ClT*Filfy,
TeWw,

Observe that in the third to last step we used ldajat k and that there is a bound on
the size of cube®’ € Wis. Itis easy to verify that all constants introduced depend
only uponn, ¢, 6, k andp, so this concludes the proof for the casg p < .

To complete the proof fof € L’(©2) we use (15) of Lemma 15 to write

”Dﬁ(PQ - PQ’)”LW(B&) = ”DB(f - PQ’)”Lw(B;)) + ”Dﬁ(f - PQ)”L‘X’(B&)
< CS(Z) P|IV*Fllgy + C Q) VNIV f|lLoe
< Q) PNV FlLwey

because both the diameter Bf and the separation &, from By are comparable
to 1(Q’). Substituting into (87) and multiplying byQ’)~"*= then gives the result.
Terms involvindf — Pg)

Lemma 32 There are constaniS = C(n, ¢, 6, k, p) such that forl < p < o

DT D QD ((fo-Po)Ko)

Q' eWs3 QeN(Q) 0<B<a

P p
e = C ||ka(y)||Lp(g) (89)

while forp = o

< C[[V*F )] Q<. (90)

—la—p| — * %
Q)7 HDﬁ((fQ Pq) * Ko) L(A7/16)Q) ~
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PROOF. We first diferentiate within the integral (77) and make the change of
variablesz = (x + 1(Q)Y) to obtain

D¥((fq - Po) * Ro)(¥) = f D¥(fq - Po)(x + (Q9)Ko() 6
= or f Di(fo - PQ)(Z)KQ( |(Q))

By Lemma 26 we know that all points at whid%b((z - X)/I(Q)) # O lie either
in the union of cubes$; from the chain coverin@'q, or within distancevnl(Q)
of 5\ Tq. It is possible from the definition dfg to define a collectionT,,} of
cubes such that each, has length comparable to its separation fr@rand so
UT., contains all points within distancg/nl(Q) of I'5 \ I'q. All of the constants of
comparability depend on, €, ands and in particular it is evident that (75) is still
valid for these new cubes. We may then adjpif} to the chain(S;} so that we
have a chain covering all df;. Abusing notation we also call the new cha8y}.
Not all cubes in this chain are Whitney cubes(fbut in our working we need
only keep in mind thafg = 0 on all those that are not. Using this convention, (75)
implies

|DP((fq - Po) * Ko)(¥)| < Z (@)MK(@)[ ‘Dﬁ(fQ Po)@| -~
J

(91)

I(S;) 1(Q) I(Q)n

Now suppose Kk p < o and apply (14) of Lemma 15 with the expongn 1 to
the integrals. This gives

f D(fo - PO@)| s (S L3'1Z|(S»m>(( )IIkaUIILl(sm)

1(Sw)
Sy

I(Q)

|(Q)” |(Q)”

:C(|(sj))k‘w"1( ) > 1(Sm) f |V*fo(y)| dy

This is even valid on the cubes that we appended to the chain, bearing in mind that
fo = 0 on those cubes. Substituting back into (91)

D°((fq - Po) * Ko)(¥)
<c 3 (1)<{iea ) aes e I(Sm) 1. 1741009]dy
j

Q) \1(Q
i ISH\V? (1(S)) l(sm)
= k-] A 14 K
clQ Z,.(I(Q)) (l(Q)) © 1,7 el

. © (S k=(8] I(S:
= CI(Q ; % nglefQ(y)l dy[z (%) K(%)

j=m
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however the number &; of a given scale is bounded by constants depending on
n, e andd, so applying Lemma 27

: @)“‘*'K(@) ) ('<Sm>)k‘w'K('<Sm>)
jZm(l(Q) @)= “™*Nig) i@

and hence

K-|8l+1
Do - Pa) « RI] < Q@ - (100) w122 £ [7*tatwlay

Taking the p-th power we may use &lder’s inequality, then the estimate from
Lemma 27 withg = (kp— |Blp+ p— n)/(p — 1), and then Jensen’s inequality to
conclude

|DA((fq - Pg) * Ko)()|”

) n P d i
<C |(Q)(k—|ﬁ|)P [Z (Il((SQn;)) K(Il((SQn;))( S |kaQ(y)| dY) ] [Z (Il((SQn;)) K(If(s(?n;))}

m=1 m=1

<ci@ry () (L) £ vtampay
m=1 m

<ci@ oy (B0 [ wiomray
m=1 m

As the estimate is independenbgintegration ovef17/16)Q merely increases the
constant marginally and cancels a factot(@)". Thus

I(Sm)

[I7((fo = Po) * K)Msurspey < CUQ™ P ) K( I(Q)
m=1

) IVEfo(y)IP dy.
Sm

(92)
If we multiply (92) byl(Q)~*#P and sum as in (89) we obtain

DT DT QT R|DA((fg - Po) x Ko)

QeWs3 QeN(Q) 0<B<a

<c Y Qe N K(Il((s(g)) fs IV fo(y)IP dy

Q' eWs3 QeN(Q') 0<B<a SmNTg#0

p
LP((17/16)Q)

but we have bounds for the number of neighb@rs N (Q’) and the valueg with
0 < B < a andje| < k. MoreoverQ e ‘W5 hasl(Q)* 0P < 1 for|a| < k. If we write
W, for the collection of cubes that are neighbors of cubes ffidfathe estimate
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then reduces to

33 3 QDA (f - Po) Ko

QeWs QeN(Q) Osp=ar

<c Y > K(Il((SQ";))mekaQ(y)l"dy

QeW4 S0

LP((17/16)Q)

Note that sincefg = 0 on the cube§; that do not intersedty we may leave those
out of the inner sum. The cubes that remain are Whitney cub&® af which

fo = f. Reversing the order of summation we find that for eSch W; we sum
overQ € G(S), whereG(S) is as in (27). It was proven in (27) that the number of
these cubes having scale/ZS) is bounded by a constant multiple df 2so

> QY P||DA((fg - Po) + Ro)[!

QeWs QeN(Q) Osp=ar

LP((17/16)Q)

= “ty)Pd
QeTWa S Tg#0 (I(Q))f IVEE(y)IP dy

K |(Sm)
=C ) fw f(y)|deQ€Zg(:S) (l(Q))

SeW;

<C ) f|ka(y)|deZ 2Mik(2))

SEWl

<c Y [mroray

SeW,
< CIV* I )Ly

<C

where the penultimate estimate is from Lemma 27.

As has been true throughout, the proof is easier in the pase». Returning to
(91) we need only use (15) of Lemma 15 to deduce

(S)) I(S))

[D¥((fq - Po) + KQ)(x)I<||ka||Lm(Q)Z(I(Q)) (S (I(QJ))
_ (SHVEL (1(S))

< CIQ PV Sl B K[~

) “”Z(I(Q)) (l(Q))

< CI(Q)* PNIV¥| Loy

where we used the fact that only finitely ma8y of a given scale intersect the
twisting cone, and the estimate from Lemma 27. Multiplyind (€)' gives the
desired result.
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5 Proof of Theorem 8
Definition and Bounds for the Extension

Using standard techniques we may construct a smooth partition of unity corre-
sponding to the Whitney decompositio#r,. In particular, from Stein [18] Chapter

VI Section 1.3 there ar€™ functions®q such thaty, @5 = 1 on the interior of

Q°, there are bounds & ®5 < 1, the support of eactbq is in (17/16)Q, and

the derivatives satisfiD*®q| < c(le))I(Q)™. Fix such a partition and define for
fel(Q)

E(x) = f(x) ?fer
2gew, Pa(¥)Ef(x) If x & (Q°)°

The definition of locally uniform implies th&Q has no density points and is there-
fore of measure zero, of is defined almost everywhere. Moreover the properties
we have established for ti&, allow us to bound the Sobolev norm of this function
on (Q°° . We begin by computing

D'Ef = D" (Egf + )| (Eof - Eq T)P)
QeW,

=D"Egf+ Y > DFEf - Eof) D" g, (93)
Qe W, 0<B<a

Using the notationV(Q’) for the cubes neighborin@’ and inserting the bound on
the derivatives of the partition of unity we obtain foKlp < oo

ID"EF 1105
< (IDEq fllv@)

N\ —|a— p
£ > ol - BIQ)PIDHEof - Eq Dllronarsw)
QeN(Q) 0<B<e
< C(n,k, p) ID*Eq flILn(o

+ C(n, K, p) Z Z C(|a’ _IBDpI(Q’)_la_ﬂlp”Dﬁ(SQf - 8Q’ f)”EP(Q'm(17/16)Q)

QeN(Q) 0<B<a

where the latter inequality uses thélder estimate and the fact that the number of
terms in the sum depends only arandk. If we then sum over al’ € ‘W, and
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use the bounds (79) and (82) we find
D& P oy
<C ) ID°Eq flifuqy
QeW,
+ Z Z Z c(la - BIQ) *PIDP(Eqf — Eq e narien)
Q eW, QeN(Q) 0<B<a
< C[[D* @I aq + C IV E Wiy

with constants that now depend oyk, p, e andé. Summing ovete| < k bounds

the LE((QC)O) norm of &f by the LIE’(Q) norm of f. A similar bound is valid in the

p = oo case, where we instead take absolute values and the bounds on derivatives
of @q into (93), use (80), (83), and the fact that the summation over multi-indices
and neighboring cubes only introduces a constant factor, to obtain

D&t < D8 fl+ D ) clla = AINQ) " PID/(Eaf - Eo )l
QeN(Q) 0<B<a

< CIID* fllw(e) + C[V*EY)|| (94)

@

and then sum oveéw| < k.

What remains to be proven is th&ff is in LE(R”). This may be thought of as
checking that the pieces éff “join up” correctly atoQ, and is not too dficult to
verify in the case that € C* with bounded derivatives. We reduce to this case
using the following result of Jones (Proposition 4.4 in [11]).

Proposition 33 (Jones)For fixedn > 0, k, p € [1,0), and f € LE(Q) there is
ge C*R" NL(Q) andM € R with

IIf - Alip) < Cn and ID'gl<M forO<|a| <k (95)
while for fixedf € L?(Q) there isg € C*(R") N LY () with
If —dlle @ <Cn and  |ldllir@ < Cliflle @) (96)
Fix a with |a| < k. For f satisfying the conditions of Proposition 33 we see from
(95) or (96) thatD*&f is Lipschitz in a neighborhood of any point &, and by
virtue of theL> estimate (94) it is also Lipschitz in a neighborhood of any point
of (Q°)°. We claim that this still holds in a neighborhood of any pointg, and

therefore thaD*&Ef is locally Lipschitz. It clearly sffices that there is a constant
s> 0 such that ifx € (Q°)° andy € Q with [x —y| < sthen

ID*(EF(x) - & (y))| < CIx - Y. (97)

Let s = €6/20M, fix x € (Q°)° andy € Q with [x -y < s. Let Q € W5 containx
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andxq be its center, and sg to be the initial point of the curve around which
we have the twisting conkEg. Integration againS{Q preserves polynomials, so in
particular it preserves the constdnt D” f(yg). Since&f(Xg) = Eq f(Xg) we may
compute

D°61(x0) - D" ()] = | | (0" falxe + (@) ~ LIRa)
< [ |p ot +1(@9) - LRe@)| a7

Reasoning as in the proof of th& estimate for Lemma 32 we see that

—la|

~ o ~ o ~ k
|D* fo(x+(Q)9)-L| = D fo(Xo+(Q)F)-D" f (yo)| < Clxo+H(QF-Yo|  IV*Fll=)
and this may be integrated agaiﬁ%atgl to provide

ID"Ef(xq) — D" f(yg)| < CUQ NIV flleey < CIx = Y IV¥fllLe)  (98)

From Lemma 12 we knowx — Xg| < dist(Xq, Q) < [x— Y|, and combining this with
our bound onD“8f|Lm((gc)o) shows that

[EF(X) — EF(XQ)| < CIV¥F Iy X — V. (99)

Also from this lemma we haviq — Yol < 20v/nl(Q) < CIx -V, sOlyg — Yyl <
254/njx -yl < 6. We may therefore connegto yo with a chain of cubes and apply
theL™ estimate in Lemma 15 to conclude

ID*f(y) - D*f(yo)| < CIVfllLalx = Y
This may be combined with (98), (99), and the fact y| < 1 to prove (97).

The above reasoning shows that dnyatisfying the conclusions of Proposition 33
has locally Lipschitz derivatives of all orders less thaand is therefor&-times
differentiable almost everywhere. We conclude thatL?(R") and

||8f||LE(Rn) < C”f”LE(Q)

so that& is a bounded linear operator on this space of functions. Proposition 33
shows that we can approximate (or weakly approximate in the paseo) any

g € LY(Q) by suchf, and consequently th&g is in L(R") and satisfies the same
estimate. This completes the proof of Theorem 8.
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