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Abstract

We consider the problem of constructing extensionsLp
k (Ω) → Lp

k (Rn), whereLp
k is the

Sobolev space of functions withk derivatives inLp andΩ ⊂ Rn is a domain. In the case
of LipschitzΩ, Caldeŕon gave a family of extension operators depending onk, while Stein
later produced a single (k-independent) operator. For the more general class of locally-
uniform domains, which includes examples with highly non-rectifiable boundaries, ak-
dependent family of operators was constructed by Jones. In this work we produce ak-
independent operator for all spacesLp

k (Ω) on a locally uniform domainΩ.
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1 Introduction

We work on the Euclidean spaceRn of dimensionn ≥ 2, and on a connected open
domainΩ. Let α = (α1, . . . , αn) ∈ Nn be a multi-index with length|α| =

∑
α j.

Supposef andg are locally integrable onΩ and are related by the integration by
parts formula ∫

Ω

f (x)(Dαφ(x)) dx = (−1)|α|
∫

Ω

g(x)φ(x) dx

for all φ ∈ C∞ with compact support inΩ, whereDα = (∂/∂x1)α1 · · · (∂/∂xn)αn.
Then we callg the weak derivative off of orderα, and writeg = Dα f .

The Sobolev spaceLp
k(Ω) consists of those locally integrable functionsf which

have weak derivatives inLp(Ω) for all α with |α| ≤ k. It is a Banach space with
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norm
‖ f ‖Lp

k (Ω) =
∑

|α|≤k

‖Dα f ‖Lp(Ω).

If we compare the Sobolev spaces onRn to those on a subdomainΩ, it is evident
that there is a bounded linear mappingLp

k(Rn) → Lp
k(Ω) induced by the restriction

f 7→ f |Ω. This paper is a contribution to the ongoing work of many authors on the
corresponding extension problem (see [8,3,2,16,5,11,12,6,21,15]), which may be
briefly summarized as follows.

Question 1 What may be said about the existence and properties of bounded linear
extension mappingsE : Lp

k(Ω)→ Lp
k(Rn) with E f |Ω = f ?

A simple example shows that this problem depends non-trivially on the geometry
of ∂Ω.

Example 2 Considerf (x, y) = x−a on Ω = {(x, y) ∈ R2 : |y| < xb, x ∈ (−1,1)} with
b > 1. For a > 0 andε > 0 so small thatb−(a+1)(2+ε) > −1 we havef ∈ L2+ε

1 , but
this has no extension inL2+ε

1 as the Sobolev embedding theorem implies the latter
is a space of Hölder continuous functions.

Extension on Lipschitz Domains

In view of the obstruction posed by a cusp on∂Ω it is perhaps unsurprising that
the classical affirmative results are for Lipschitz domains. The following theorem
of Caldeŕon [2] was the first to deal with general orders of smoothnessk, and was
later improved by Stein [17,18] using an entirely different proof.

Theorem 3 (Caldeŕon) Let Ω ⊂ Rn be Lipschitz. For eachk ∈ N there is a
bounded linear extension operator such that for all1 < p < ∞

Ek : Lp
k(Ω) −→ Lp

k(Rn)

with bound depending onn, k, p and the constants of the Lipschitz domain.

Theorem 4 (Stein) Let Ω ⊂ Rn be Lipschitz. There is a bounded linear extension
operator such that for anyk ∈ N and1 ≤ p ≤ ∞

E : Lp
k(Ω) −→ Lp

k(Rn).

with bound depending onn, k, p and the constants of the Lipschitz domain.

Notice that Caldeŕon produces a family of extension operatorsEk, one for each or-
der of smoothness. By contrast, Stein constructs a singledegree independentexten-
sion operator. In what follows we shall examine the existence of degree independent
operators on a much larger class of domains.
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Extension on Locally Uniform Domains

Locally uniform domains were introduced by Martio and Sarvas [13], but the fol-
lowing equivalent definition is from [11].

Definition 5 A domain is(ε, δ) locally uniform if between any pair of pointsx,y
such that|x− y| < δ there is a rectifiable arcγ ⊂ Ω of length at most|x− y|/ε and
having the property that for allz ∈ γ

dist(z, ∂Ω) ≥ ε |z− x||z− y|
|x− y| . (1)

These domains have close connections to quasiconformal mappings [4] and enjoy
a wide variety of potential-theoretic properties akin to those of the half-spacesRn

+

[9]. Unlike Lipschitz domains, they may have highly non-rectifiable boundaries: the
boundary of a locally uniform domain inRn may have any dimension in [n− 1,n).
The extension properties of locally uniform domains were first studied by Jones,
who proved that they are precisely the domains on which BMO functions can be
extended [10], and that they have the following Sobolev extension properties [11].

Theorem 6 (Jones)LetΩ ⊂ Rn be an(ε, δ) locally uniform domain. For each fixed
k ∈ N there is a bounded linear extension operator such that for all1 ≤ p ≤ ∞

Ek : Lp
k(Ω) −→ Lp

k(Rn)

with a bound depending onn, ε, δ, k and p.

Theorem 7 (Jones)If Ω ⊂ R2 is bounded and finitely connected then the following
are equivalent

(i) There are extension operatorsEk as in Theorem 6.
(ii) Ω is an(ε,∞) locally uniform domain.
(iii) ∂Ω consists of a finite number of points and quasicircles.

From these theorems we know both that the locally uniform domains admit Sobolev
extension operators and that they are the most general class to do so inR2. Certain
known examples suggest that there is no simple geometric condition like that in
Theorem 7 to characterize extension domains in higher dimensions, though some
progress has been made by Herron and Koskela [7,6].

One limitation of Jones’ results is that the operatorsEk are far from degree inde-
pendent. In factEk is not even defined on the spacesLp

l (Ω) for l < k. The purpose
of the present paper is to offer an alternative approach to Sobolev extensions on
locally uniform domains that results in a degree independent operator.
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Theorem 8 Let Ω ⊂ Rn be an (ε, δ) locally uniform domain. There is a linear
operator f 7→ E f such that for anyk ∈ N and1 ≤ p ≤ ∞

E : Lp
k(Ω) −→ Lp

k(Rn) (2)

‖E f ‖Lp
k (Rn) ≤ c(n, ε, δ, k, p)‖ f ‖Lp

k (Ω). (3)

The proof of Theorem 8 follows the method developed by Whitney for his cele-
brated Lipschitz extension theorem [22]. We decompose the interior ofΩc = Rn\Ω
into a union of cubes, define an extension for each cube and then sum using a
smooth partition of unity. This is the same approach used by Jones in [11] and some
of our arguments parallel his, however the proofs differ substantially in the method
used to construct an extension corresponding to an individual Whitney cube. To
obtain a degree independent extension we need to capture the behavior off up to
arbitrary orders, and this requires quite different techniques than are needed when
the order of approximation is fixed in advance. The bulk of this work is found in
Section 3 and summarized in Theorem 16. It involves solving a certain moment
problem under a geometric constraint on the support of the solution, and was in-
spired by Stein’s use of a corresponding one-dimensional result (Lemma 1 on page
182 of [18]) in his construction for the Lipschitz case.

Before embarking upon the proof we warn the reader that Theorem 8 will be only
proved under the additional assumption thatΩ has diameter at least 1. This allows
us to avoid renormalizing polynomials of degree less thank to have norm zero in
Lp

k , an operation which is routine but adds unnecessary technicalities to the proof.
As a result the constantc in (3) will grow without bound if the diameter ofΩ is sent
to zero while all other constants in (3) remain fixed.

The author would like to thank his PhD advisor, Peter Jones, for his support and
assistance with this work.

2 Geometry

Points inRn are denotedx or (x1, x2, . . . , xn). The Euclidean distance between two
points is|x−y|, the distance fromx to a setA is dist(x,A), and the distance between
two sets is dist(A, B). Balls are writtenB(x, r) = {y : |x− y| ≤ r}. At times it will be
convenient to writeλB for the ball concentric withB but havingλ times its radius.

A set of the formQl(x) = {y : |yj − xj | ≤ l/2} is a cube of centerx and lengthl. The
center of the cubeQ is denotedxQ and its length isl(Q). As with balls,λQ is the
cube with the same center asQ but lengthλ times as large. A dyadic cube of scale
2j, j ∈ Z, is a cube having size 2j and all of whose vertices lie on the lattice (2jZ)n.
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The Whitney Decomposition

We make extensive use of Whitney’s decomposition of an open set into cubes. A
proof may be found in Stein [18] Chapter VI, Section 1.

Lemma 9 If Ω ⊂ Rn is open then there is a countable collection{Q j} of dyadic
cubes with disjoint interiors such that

1 ≤ dist(Q j , ∂Ω)√
nl(Q j)

≤ 4 (4)

and if Q j
⋂

Qk , ∅
1
4
≤ l(Q j)

l(Qk)
≤ 4. (5)

The collectionW = {Q j} is called the Whitney decomposition ofΩ.

Notice in particular that ifQ is the Whitney cube ofΩ containingx then 4
√

nl(Q) ≥
dist(Q, ∂Ω) ≥ dist(x, ∂Ω) − √nl(Q), so that

l(Q) ≥ dist(x, ∂Ω)/(5
√

n) (6)

The geometry of a locally uniform domainΩ may conveniently be described us-
ing Whitney cubes. Following Jones [11], we say two Whitney cubestouch if
their intersection contains a face of one or both cubes, and that a finite sequence
S1, . . . ,Sm of cubes forms achain if S j andS j+1 touch for j = 1, . . . ,m. A chain
S = S1, . . . ,Sm = S′ is said toconnectS to S′ and havelengthm. We defineW1

to be the collection of Whitney cubes ofΩ, andW2 to be those of the interior of
Rn \Ω.

Connecting two cubes of comparable size

Lemma 10 LetS andS′ be cubes fromW1 that have comparable sizes and sepa-
ration, that is

1
C
≤ l(S)

l(S′)
≤ C,

1
C
≤ |xS − xS′ |

l(S)
≤ C,

1
C
≤ |xS − xS′ |

l(S′)
≤ C

wherexS andxS′ are the centers ofS andS′ respectively. Suppose also thatl(S), l(S′)
and |xS − xS′ | are all less thanδ. Then there are constantsC1 = C1(n,C, ε) and
C2 = C2(n,C) and a connecting chainS = S1, . . . ,Sm = S′ of cubes fromW1 with
lengthm≤ C1, and such that every cubeS j in the chain satisfies

ε

C2
≤ l(S j)

l(S)
≤ C2

ε
and

ε

C2
≤ l(S j)

l(S′)
≤ C2

ε
(7)
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PROOF. This lemma is a variant of Lemma 2.4 from [11], and has the same proof.
Since|xS − xS′ | < δ, there is a rectifiable curveγ joining xS to xS′ with property
(1). Let z be a point onγ. If z ∈ S (or S′) then dist(z, ∂Ω) ≥ l(S)/2 (respectively
l(S′/2)). If not, then|z− xS| > l(S)/2 and|z− xS′ | > l(S′)/2, so by (1)

dist(z, ∂Ω) ≥ εl(S)l(S′)
4|xS − xS′ | ≥ C3εl(S)

Conversely dist(z, ∂Ω) ≤ dist(xS, ∂Ω)+ l(γ) ≤ 4
√

nl(S)+ |xS− xS′ |/ε. Using (4) and
(6) we see that anyS j ∈ W1 which meetsγ satisfies (7). From the collection of
cubes meetingγ we then extract a finite chain joiningS to S′; the bounds (7) and
the length bound onγ ensure that this chain has length at most someC1(n,C, ε).

Connecting a small cube to a large cube

In this context alarge cube is one having length comparable toεδ/
√

n. This is the
largest size of cube which may be found all along the boundary, in the sense that
any cube fromΩ (or even any point of∂Ω) may be connected to a cube of this size
by an arc of comparable length, and thence by a chain with known structure. This
is made precise in the following lemmas, and illustrated in Figure 1.

Lemma 11 Let x ∈ Ω satisfydist(x, ∂Ω) < εδ/(20
√

n). Then there isS ∈ W1

with l(S) ≥ εδ/(20
√

n), such thatx may be connected to the centerxS of S by a
rectifiable curve lying within distanceεδ of ∂Ω and of length at mostδ/ε.

PROOF. If x already lies in a Whitney cubeS of side length at leastεδ/(20
√

n)
then we need only connectx to the centerxS by a straight line. It cannot lie in
a larger cube as it is too close to∂Ω. Hence we assume that the Whitney cube
containingx has length less thanεδ/(20

√
n).

SinceΩ is connected and of diameter at least 1 there is a pointy ∈ Ω such that
|x − y| = δ. From Definition 5 there is a rectifiable curveγ of length at mostδ/ε
joining x to y, and in particular containing a pointz equidistant from bothx andy.
It is immediate that|z− x| = |z− y| ≥ δ/2, so atz we have by (1)

dist(z, ∂Ω) ≥ ε |z− x||z− y|
|x− y| ≥ εδ

4

and therefore by (6) thatS′ 3 z has lengthl(S′) ≥ εδ/20
√

n.

It is now legitimate to take the first cube of lengthεδ/(20
√

n) encountered as we
traverseγ from x to y . Call this cubeS. The piece ofγ connectingx to S lies en-
tirely within cubes smaller thanεδ/(20

√
n), hence within distanceεδ of the bound-

ary. The cubeS hasl(S) ≥ εδ/(20
√

n) but must be adjacent to a cube with length
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smaller than that, so by (4) and (5) we havel(S) < εδ/(5
√

n) and it is also within
distanceεδ of the boundary. Moreover the curve fromx to S is no longer than that
from x to z, so has length at mostδ/ε − δ/2. We can adjoin to this curve a line
segment from its endpoint on∂S to the centerxS and have thereby connectedx to
xS by a curve of total length at mostδ/ε − δ/2 + εδ/5 ≤ δ/ε.

Lemma 12 Let Q ∈ W2 with l(Q) ≤ εδ/(200n). Then there is a Whitney cube
S∗ ∈ W1 with

2
√

n ≤ l(S∗)
l(Q)

≤ 8
√

n (8)

dist(Q,S∗) ≤ Cn
ε

l(Q) (9)

and a chain{S∗ = S1,S2, . . . ,Sm = S} with l(S) ≥ εδ/(20
√

n) and having the
property that

ε

Cn
≤ l(S j)

dist(Q,S j)
≤ 1 (10)

whereC is a constant independent ofn andε.

PROOF. Using the basic properties of the Whitney decomposition we choose a
point x ∈ Ω such that dist(x, xQ) ≤ 5

√
nl(Q) and dist(x, ∂Ω) < l(Q). From this

point we apply Lemma 11 and obtain a curveγ connectingx to a pointxS which is
the center of a Whitney cubeS with l(S) ≥ εδ/(20

√
n).

Consider the collection of cubes fromW1 that intersectγ. This collection contains
a chain of cubes fromx to S, so we need only see that there is an appropriate start-
ing cube on this chain and that the estimates hold. Observe that the chain contains a
cube of length at most dist(x, ∂Ω) < l(Q) and also a cube of lengthl(S) > 8

√
nl(Q),

hence by property (5) of the Whitney decomposition it certainly contains one cube
of length between 2

√
nl(Q) and 8

√
nl(Q). Ordering the cubes along the chain be-

ginning atx we call the last cube of this lengthS∗. SinceS∗ , S we can apply (6)
and (1) toz ∈ γ ∩ S∗ to obtain

40nl(Q) ≥ 5
√

nl(S∗) ≥ dist(z, ∂Ω) ≥ ε |z− x||z− xS|
|x− xS| ≥ ε |z− x|

2

so that|z− x| ≤ 80nl(Q)/ε and therefore dist(Q,S∗) ≤ Cnl(Q)/ε

Let {S j} be the chain fromS∗ to S. For anyz ∈ γ ∩ S j

5
√

nl(S j) ≥ dist(S j , ∂Ω) +
√

nl(S j) ≥ dist(z, ∂Ω)

therefore applying the estimate (1) in the caseS j , S

5
√

nl(S j) ≥ dist(z, ∂Ω) ≥ ε |z− x||z− xS|
|x− xS| ≥ ε

2
|z− x| ≥ ε

2
(|z− xQ| − |xQ − x|)
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whereupon

10
√

n
ε

l(S j) ≥ ε

2
(
dist(xQ,S j) − 5

√
nl(Q)

) ≥ dist(Q,S j) − 6
√

nl(Q)

and using the fact thatl(S j) ≥ l(S∗) ≥ 2
√

nl(Q) we have

dist(Q,S j) ≤ 10
√

n
ε

l(S j) + 12nl(Q) ≤ Cn
ε

l(S j)

from which (10) follows for all cubes butS. For the cubeS we can repeat the above
computation forz ∈ ∂S rather thanz < S. All of the estimates are identical.

Fig. 1. Construction of a chain of cubes and the twisting coneΓ.

Tubes and Twisting Cones

In order to simplify some of our proofs we perform an elementary construction
that gives a region inside the chains constructed above and on which it is easy to
propagate the estimates we shall need later.

Let {S j} be a chain of Whitney cubes with no repeated cubes. Letaj be the center of
the cubeS j andbj be the center of the faceS j∩S j+1. We trace out a piecewise linear
curveγ through these points in the ordera1,b1,a2, . . . ,bm−1,am. At each pointx ∈ γ
define a radiuss(x) which varies linearly between pointsaj andbj and is such that
s(aj) = 1

2l(S j) ands(bj) = 1
2 min{l(S j), l(S j+1)}. Finally, let Γ be the set of points

that lie within radiuss(x) of somex ∈ γ. The result is shown in Figure 1.

Lemma 13 If y ∈ Γ ∩ S j thenB
(
y,
√

nl(Q)
)
⊂ S j−1 ∪ S j ∪ S j+1.

PROOF. All points x with |x− y| ≤ 1
2 min{l(S j−1), l(S j), l(S j+1)} are inS j−1 ∪S j ∪

S j+1. However in the proof of Lemma 12 the smallest of the cubesS j wasS∗ and
had length at least 2

√
nl(Q) by (8).
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If our chain is one of those described in Lemma 10 than the setΓ has radius com-
parable to the lengths of the cubes at its ends, with bounds depending only onε, n,
and the constantC in the lemma. SuchΓ are calledtubes.

In the case that the chain connects a small cube to a large cube, as in Lemma 12, we
have instead thatΓ is a twisting cone. The name describes the fact that the radius
s(x) is comparable to the function that grows linearly alongγ and is equal tol(S1)
at one end andl(Sm) at the other.

Estimation along Tubes and Twisting Cones

Part of our reason for introducing tubes and twisting cones was that these are the
type of sets on which we may iterate the classical Poincaré inequality to estimate the
behavior of a function in terms of its weak derivatives. We state the usual Poincaré
inequality on a ball as a theorem; it is proven in most standard references, for ex-
ample it appears as Theorem 6.30 in [1], and as Lemma 1.1.11 in [14].

Theorem 14 If f ∈ Lp
k(B(0, r)) satisfies

∫

B(0,r)
Dα f = 0 for all |α| ≤ k− 1 (11)

then for all1 ≤ p ≤ ∞

‖ f ‖Lp(B(0,r)) ≤ C(k)rk‖∇k‖Lp(B(0,r)) (12)

We note in particular that from anyf ∈ Lp
k we may subtract the polynomial

P(x) =
∑

|α|≤k−1

xα

α!

?

B
Dα(ξ) dξ (13)

and thereby ensuref (x) − P(x) satisfies (11). We callP(x) the polynomialfitted to
f on B.

Before giving our estimate for the behavior off along a twisting coneΓ we fix some
notation. Recall thatΓ is centered on a piecewise linear curveγ and contained in
a chain of cubes{S j}. The ordered vertices ofγ, calledaj andb j in the definition
of a twisting cone, will here be denoted{zj}. There is a radiuss(z) at eachz ∈ γ
comparable to the size of the enclosing cubeS j 3 z. We useBj = B(zj , s(zj)) for
the balls around the vertices andPk(Bj; f ) for the polynomial of degreek fitted to
f on Bj.

Lemma 15 Let{S j} be a chain of Whitney cubes as in Lemma 10 or Lemma 12, and
Γ be the tube or twisting cone aroundγ that is contained in the chain. Lets(z) be
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the radius ofΓ at z ∈ γ, write z0 andzm for the endpoints ofγ, andB0 = B(z0, s(z0))
andBm = B(zm, s(zm)) for the balls around these endpoints.

Considerf ∈ Lp
k(Ω). If P(x) is the polynomial of degreek− 1 fitted to f on the ball

B0 then there are constantsC = C(n, ε, k, p) such that if1 ≤ p < ∞

∥∥∥ f (x) − P(x)
∥∥∥

Lp(Bm)
≤ C

(
l(Sm)

)k−1
m∑

j=1

l(S j)

(
l(Sm)
l(S j)

)n/p ∥∥∥∇k f (y)
∥∥∥

Lp(S j )
(14)

while for p = ∞

∥∥∥ f (x) − PQ(x)
∥∥∥

L∞(Bm)
≤ C l(Sm)k

∥∥∥∇k f
∥∥∥

L∞(Ω)
(15)

PROOF. Suppose 1≤ p < ∞. We begin by examining a special case that occurs
along each segment of the curveγ. Let k = 1 and consider the set consisting of
the convex hull of the unit ballB centered at the origin and a ball of radius (1+ λ)
centered at the pointa. Use s(t) = 1 + λt for the radius at positionta along the
central axis. This is a convex set, so smooth functions are dense in the Sobolev
functions (by an easy mollification argument) and it suffices to prove our estimates
under the assumption thatf is differentiable. For eachξ ∈ B(0,1) we have

f (a+ (1+λ)ξ)− f (ξ) =

∫ 1

0

∂ f
∂t

(ξ+ (a+λξ)t) dt =

∫ 1

0
∇ f (ξ+ (a+λξ)t) · (a+λξ) dt

from which by Jensen’s inequality and the fact|ξ| ≤ 1

∫

B

∣∣∣ f (a + (1 + λ)ξ) − f (ξ)
∣∣∣p dξ ≤

∫

B

∫ 1

0

∣∣∣∇ f ((1 + λt)ξ + at)
∣∣∣p|a + λξ|p dt dξ

≤ (|a| + λ)p

∫ 1

0

∫

B(at,1)

∣∣∣∇ f (s(t)ξ)
∣∣∣p dξ dt

≤ (|a| + λ)p

∫ 1

0

∫

B(at,s(t))
|∇ f (y)|p dy

(s(t))n
dt (16)

However the usual Poincaré theorem fork = 1 states

∫

B(0,1)

∣∣∣∣ f (ξ) −
?

B(0,1)
f (x) dx

∣∣∣∣
p
dξ ≤ C

∫

B(0,1)
|∇ f (ξ)|p dξ (17)
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And since the average off is precisely the zero order polynomial approximation
P0(B; f ), we may combine this with (16), (17) and a change of variables to obtain

(?

B(a,1+λ)

∣∣∣ f (y) − P0(B; f )
∣∣∣p dy

)1/p

=

(∫

B

∣∣∣ f (a + (1 + λ)ξ) − P0(B; f )
∣∣∣p dξ

)1/p

≤ C‖∇ f ‖Lp(B) +

(∫

B

∣∣∣ f (a + (1 + λ)ξ) − f (ξ)
∣∣∣p dξ

)1/p

≤ C‖∇ f ‖Lp(B) + (|a| + λ)

(∫ 1

0

∫

B(at,s(t))
|∇ f (y)|p dy

(s(t))n
dt

)1/p

(18)

If we apply the Poincaré estimate (17) again, but this time on the ballB′ = B(a,1+

λ) we have

?

B′

∣∣∣ f (y) − P0(B
′; f )

∣∣∣p dy =

?

B′

∣∣∣∣ f (y) −
?

B′
f (x) dx

∣∣∣∣
p
dy≤ C(1 + λ)p

?

B′
|∇ f (x)|p dx

and in conjunction with (18) we have shown

∣∣∣P0(B
′; f ) − P0(B; f )

∣∣∣ ≤ C(1 + λ)

(?

B′
|∇ f (y)|p dy

)1/p

+ C

(?

B
|∇ f (y)| dy

)1/p

+ (|a| + λ)

(∫ 1

0

?

B(at,s(t))
|∇ f (y)|p dy dt

)1/p

(19)

We think of Γ as decomposed into a union of sets having the geometry just dis-
cussed, soΓ = ∪Γl whereΓl is the convex hull ofB(zl , s(zl)) and B(zl+1, s(zl+1)).
The estimate (19) applies to eachΓl in the form

∣∣∣P0(Bl; f ) − P0(Bl−1; f )
∣∣∣ ≤ Cs(zl)

(?

Bl

|∇ f (y)|p dy

)1/p

+ Cs(zl−1)

(?

Bl−1

|∇ f (y)| dy

)1/p

+ |zl − zl−1|
(∫ zl

zl−1

?

B(z,s(z))
|∇ f (y)|p dy

|dz|
|zl − zl−1|

)1/p

≤ Cs(zl)

(?

Bl

|∇ f (y)|p dy

)1/p

+ Cs(zl−1)

(?

Bl−1

|∇ f (y)| dy

)1/p

+ C|zl − zl−1|
(?

Γl−1

|∇ f (y)|p dy

)1/p

(20)
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and we can write

(?

Bj

∣∣∣ f (y) − P0(B0; f )
∣∣∣p dy

)1/p

=


?

Bj

∣∣∣∣ f (y) − P0(Bj; f ) +

j∑

l=1

(P0(Bl; f ) − P0(Bl−1; f ))
∣∣∣∣
p
dy


1/p

≤
(?

Bj

∣∣∣ f (y) − P0(Bj; f )
∣∣∣p dy

)1/p

+

j∑

l=1

∣∣∣P0(Bl; f ) − P0(Bl−1; f )
∣∣∣

≤ C
j∑

l=1

s(zl)

(?

Bl

|∇ f (y)|p dy

)1/p

+ C
j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇ f (y)|p dy

)1/p

≤ C
j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇ f (y)|p dy

)1/p

(21)

where the last step uses the fact that

s(zl)
p

?

Bl

|∇ f (y)|p dy =

(
s(zl)
|zl − zl−1|

)p |Γl−1|
|Bl | |zl − zl−1|p

?

Γl−1

|∇ f (y)|p dy

≤ C(p)|zl − zl−1|p
?

Γl−1

|∇ f (y)|p dy

This concludes our discussion of the casek = 1.

Fortunately the case of generalk is not dissimilar from what we have done for
k = 1. Letγ j be the arc ofγ up tozj and suppose inductively that for any smooth
functiong and any ballB = B(x, s(x)) along the segment [zj−1, zj] we have

(?

B

∣∣∣g(y) − Pk−2(B0; f )
∣∣∣p dy

)1/p

≤ C
(
l(γ j)

)k−2
j∑

l=1

|zl − zl−1|
(?

Γl−1

∣∣∣∇k−1g(y)
∣∣∣p dy

)1/p

. (22)

Note also from (13) that the components ofPk−2(B;∇ f ) coincide with those of
∇Pk−1(B; f ).

Returning to the case of a conical piece ofΓ with notation as before, we follow the
same method as in (16) but for the functionf −Pk−1(B; f ) and using our observation
about∇Pk−1(B; f ). Herea = zj−zj−1 and 1+λ = s(zj)/s(zj−1), so that we are moving

12



on the cone fromBj−1 to Bj.

?

Bj−1

∣∣∣( f − Pk−1(B; f )) (a + (1 + λ)ξ) − ( f − Pk−1(B; f )) (ξ)
∣∣∣p dξ

≤ (|a| + λ)p

∫ 1

0

?

Bj−1

∣∣∣∇ ( f − Pk−1(B; f )) ((1 + λt)ξ + at)
∣∣∣p dξ dt

= (|a| + λ)p

∫ 1

0

?

Bj−1

∣∣∣(∇ f − Pk−2(B;∇ f )) ((1 + λt)ξ + at)
∣∣∣p dξ dt

≤ C|zj − zj−1|p
∫ 1

0

?

B(at,1+λt)

∣∣∣(∇ f − Pk−2(B;∇ f )) (y)
∣∣∣p dy dt

whence by our inductive assumption applied tog = ∇ f , and using thatat ∈ [zj−1, zj]

≤ C|zj − zj−1|pl(γ j)
(k−2)p

∫ 1

0


j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k−1g(y)|p dy

)1/p


p

dt

≤ Cl(γ j)
(k−2)p|zj − zj−1|p


j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p


p

since the integrand is no longer dependent ont. We use this to write

(?

Bj

∣∣∣( f − Pk−1(B; f )) (y)
∣∣∣p dy

)1/p

=

(?

Bj−1

∣∣∣( f − Pk−1(B; f )) (a + λξ)
∣∣∣p dξ

)1/p

≤
(?

Bj−1

| f (ξ) − Pk−1(B; f )(ξ)|p dξ

)1/p

+ C l(γ j)
(k−2)|zj − zj−1|

j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p

(23)

13



It is clear from inductive application of (23) and a single use of the Poincaré in-
equality that

(?

Bm

∣∣∣( f − Pk−1(B; f )) (y)
∣∣∣p dy

)1/p

≤
(?

B1

| f (ξ) − Pk−1(B; f )(ξ)|p dξ

)1/p

+ C
m∑

j=1

l(γ j)
(k−2)|zj − zj−1|

j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p

≤ C(s(z1))
k

(?

B
|∇k f (y)|p dy

)1/p

+ C


m∑

j=1

l(γ j)
(k−2)|zj − zj−1|


m∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p

≤ C
(
l(γm)

)(k−1)
m∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p

(24)

Comparing this to (22) and using the base casek = 1 established in (21) we see
that (24) is true for allk.

It is not difficult to pass from (24) to the desired estimate (14). The setsΓl are
contained in cubes of the chain{S j}. If Γl ∩S j , ∅ then|Γl | and|S j | are comparable
and the length|zl − zl−1| is is comparable tol(S j). Moreover the lengthl(γ j) is
comparable tol(S j) with a constant depending onε, because the length of a subarc
of γ is comparable to the separation of the endpoints and we know (10). Multiplying
both sides of (24) by|Bm|1/p and rewriting the bound in terms ofl(S j) we have

∥∥∥ f − Pk−1(B; f )
∥∥∥

Lp(Bm)
≤ C

(
l(Sm)

)k−1
m∑

j=1

l(S j)

(
l(Sm)
l(S j)

)n/p ∥∥∥∇k f (y)
∥∥∥

Lp(S j )

This concludes the proof for the case 1≤ p < ∞.

Whenp = ∞ the argument is considerably simpler. It is a well known consequence
of the Sobolev Embedding Theorem thatf ∈ L∞k (Ω) has a representative for which
∇k−1 f is Lipschitz on balls contained inΩ, with Lipschitz norm‖∇k f ‖L∞(Ω). Inte-
grating∇k f along a rectifiable curve then gives bounds for lower order derivatives
as is usual in Taylor’s Theorem. As the uniform domain condition ensures that any
x andy with |x− y| < δ are joined by a large number of rectifiable curves of length
not exceedingC(ε)|x− y|, we conclude immediately that

∣∣∣( f (x) − PQ(x)
) − (

f (y) − PQ(y)
)∣∣∣ ≤ C(ε, k)|x− y|k‖∇k f ‖L∞(Ω)

This implies both that
∣∣∣ f (x) − PQ(x)

∣∣∣ is bounded byC‖∇k f ‖ l(S0)k on B0 and that∣∣∣ f (x) − f (y)
∣∣∣ is bounded byC‖∇k f ‖ l(Sm)k for x ∈ B0 andy ∈ Bm, so (15) follows
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and the lemma is proven.

Counting Cubes in Tubes and Twisting Cones

In the sequel we shall need to perform estimates along twisting cones and families
of tubes for each Whitney cube fromW2. This will cause most cubes fromW1 to
be counted many times, so we record some bounds on how frequently a single cube
occurs.

For the estimate on families of tubes we fixQ ∈ W2 and constantsC1 andC2. Let

F (Q) = {S j ∈ W1 : l(S) ≥ C1l(Q) and dist(S,Q) ≤ C2l(Q)}. (25)

Any two cubesS j ,Sk from F (Q) satisfy the conditions of Lemma 10 so they are
connected by a chain{Tl(S j ,Sk)} containing at mostC3 cubes. There are finitely
many cubes inF (Q), hence

∥∥∥∥∥∥∥∥
∑

S j ,Sk∈F (Q)

∑

l

ΨTl (S j ,Sk)(x)

∥∥∥∥∥∥∥∥
L∞

≤ C4(ε, n,C1,C2)

where ΨA(x) is the characteristic function of the setA. Furthermore the cubes
Tl(S j ,Sk) all have length comparable tol(Q) and satisfy dist(Q,Tl) ≤ C5l(Q), so
chains arising from the above construction applied to the setF (Q′) can only inter-
sect those corresponding toF (Q) for finitely many choices ofQ′, and therefore

∥∥∥∥∥∥∥∥
∑

Q∈W2

∑

S j ,Sk∈F (Q)

∑

l

ΨTl (S j ,Sk)(x)

∥∥∥∥∥∥∥∥
L∞

≤ C6(ε, n,C1,C2). (26)

For twisting cones the situation is different. A cubeS ∈ W1 intersects infinitely
many twisting cones but only finitely many of any given scale.

Suppose that for each sufficiently smallQ ∈ W2 we have a corresponding twisting
coneΓQ. Fix S ∈ W1 and letG(S) be the set of allQ ∈ W2 such thatΓQ ∩ S , ∅.
Since the smallest cube in the chain containingΓQ is bounded as in (8) we see that
all Q ∈ G(S) havel(Q) ≤ C(n, ε)l(S). By (10) any suchQ has dist(Q,S) ≤ Cl(S),
and within this distance there are at most (C2 j)n cubesQ with l(Q) = 2− j l(S), so
we have shown

#{Q ∈ G(S) : l(Q) = 2− j l(S)} ≤ C(n, ε)2n j. (27)
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3 A Function with Vanishing Moments

We prove that sets similar to twisting cones support smooth, exponentially decaying
functions with vanishing moments of all orders. This is the crucial step in defining
a degree independent operator, because the convolution off ∈ Lp

k with such a
function captures information about all orders of polynomial approximation tof .

Theorem 16 Let R0 > 0 and η < 1 be fixed constants. SupposeΓ ⊂ Rn has the
property that for everyr ≥ R0 there isx with |x| = r andB(x, η|x|) ⊂ Γ. Then there
is a smooth functionK(x) supported onΓ, and constantsC andT depending only
onn, η andR0, such that

∫

Rn
xαK(x) dx =


1 if α = (0, . . . , 0)

0 if α ∈ Nn \ {(0, . . . , 0)} (28)

∣∣∣K(x)
∣∣∣ ≤ κ(|x|)|x|1−n (29)

where

κ(t) = exp

−
(
1
2

log
t
T

)1/2

exp

(
1
2

log
t
T

)1/2 . (30)

Theorem 16 is a consequence of the following technical lemma, which describes
the desired geometry in more detail.

Lemma 17 For fixed constantsR and j0, let r j = Rexp
[
2 log2( j + j0)

]
. Fix also a

constantλ, and suppose thatΓ ⊂ Rn has the property that for eachj there is a point
ξ j ∈ Sn−1 andΛ j = Sn−1 ∩ B(ξ j , λ) with

{
x : r j ≤ |x| ≤ r j+1 and

x
|x| ∈ Λ j

}
⊂

(
Γ ∩ {

x : r j ≤ |x| ≤ r j+1
})
.

Then there is a smooth functionK(x) supported onΓ which has the property(28)
and satisfies the estimate(29)with constantsC andT depending onn, R, λ and j0.

PROOF. We prove that Lemma 17 implies Theorem 16. The assumptions of the
theorem readily imply the existence of a constantc with the property that at any
radiusr ≥ R0 there isx with |x| = r and

{
y :

(
1− η

2

)
r ≤ |y| ≤

(
1 +

η

2

)
r,

y
|y| ∈ B

(
x
|x| , cη

)}
⊂ B(x, η|x|) ⊂ Γ
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From this it suffices that we can choosej0 such thatr j+1/r j ≤ (2+ η)/(2− η) for all
j, andR such thatr0 ≥ R0. The former is equivalent to requiring

exp
[
2 log2( j + j0 + 1)− 2 log2( j + j0)

]
≤ 2 + η

2− η

and since
(
log2(x+ 1)− log2 x

)
is decreasing forx > 1 and has limit zero asx→ ∞

this may be achieved by takingj0 sufficiently large. WithR = R0 exp[−2 log2 j0]
the latter condition is also satisfied.

The remainder of this section is spent proving Lemma 17. Considering the variation
in the radial co-ordinate|x| leads us to examine the existence of smooth functions
with vanishing moments on the half-line. This is a classical problem in the theory
of moments that was first solved by Stieltjes [19,20]. An elegant proof using com-
plex analysis is in Chapter VI, Section 3.2 of [18]. Unfortunately neither of these
arguments adapts well to twisting cones, so we begin with a different approach that
allows us greater control over the regions on which individual moments cancel. We
then turn to the angular dependence, and the construction of certain functions on
the setsΛ j. These are combined with the functions from the one dimensional case
to produceK(x).

Vanishing Moments on the Half-Line

Let {r j}∞j=0 be an increasing sequence of positive real numbers. We partitionI =

[r0,∞) into the intervalsI j = [r j , r j+1). Our first goal is to construct smooth func-
tionsψ j which have a finite number of vanishing moments and which are supported
on the intervalsI j. From the functionsψ j we will then inductively construct a func-
tion Ψ satisfying (28). This will require knowing estimates for the higher order
moments of theψ j.

Some Building Blocks

Consider for eachj ∈ N, j , 0 the function

χ j(s) =


C j exp

( j
s2 − 1

)
s ∈ (−1,1)

0 otherwise

whereC j is chosen so that
∫
χ j = 1. For j = 0 setψ0 = ψ1. These functions areC∞

on the real line and are supported on [−1,1]. It is elementary to showC j ≤ e4 j/3.

17



We useφ j to denote the function obtained by translating and scalingχ j to the inter-
val I j such thatφ j is C∞, supported onI j, and has

∫
φ j = 1.

φ j(r) =
2

(r j+1 − r j)
χ j

(
2r

r j+1 − r j
− r j+1 + r j

r j+1 − r j

)
(31)

Now we make our main definition for this section. Thej-th building block function,
supported on the intervalI j, is

ψ j(r) =
(−1)j

j!

(
∂

∂r

) j

φ j(r) (32)

This definition is related to the classical Rodrigues formula for the Legendre poly-
nomials. As in the theory of orthogonal polynomials, its practical application comes
from the ease with which we may calculate the momentsµ j,k of ψ j using integration
by parts. We differentiaterk and integrateψ j(r) as many asj times. Notice that at
each stage the boundary terms vanish because they are multiples of derivatives of
φ j at the endpoints ofI j, so we obtain

µ j,k =

∫

I
rkψ j(r) dr =



0 if k < j

1 if k = j(
k
j

) ∫
I j

rk− jφ j(r) dr if k > j

(33)

At times we will need the following elementary estimate for theµ j,k with k > j

|µ j,k| ≤
(
k
j

)
rk− j

j+1 (34)

Bounds for the building blocks

As our construction will involve adding and subtracting multiples of the functions
ψ j it will be important that we know how theL∞ norm ofψ j depends onj.

Lemma 18 The functionsψ j satisfy

|ψ j(r)| ≤
(

20
r j+1 − r j

) j+1

(35)
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PROOF. By (31), (32) and the linearity of the change of variables we find that it
suffices to know a bound for thej-th derivative ofχ j:

ψ j(r) =
(−1)j

j!
2

(r j+1 − r j)

(
d
dr

) j

χ j

(
2r

r j+1 − r j
− r j+1 + r j

r j+1 − r j

)

=
(−1)j

j!

(
2

(r j+1 − r j)

) j+1 (
d
ds

) j

χ j(s) (36)

Rewriting the definition ofχ j(s) as

χ j(s) = C j exp
( j
s2 − 1

)
= C j exp

(
j

2(s− 1)

)
exp

( − j
2(s+ 1)

)
(37)

we may proceed by differentiating the product to obtain

C−1
j

(
d
ds

) j

χ j(s) =

j∑

k=0

(
j
k

)
·
(

d
ds

)k

exp

(
j

2(s− 1)

)
·
(

d
ds

) j−k

exp

( − j
2(s+ 1)

)

It is elementary but tedious to obtain bounds for these derivatives. The terms that
arise when we expand using the Leibnitz rule are products involving (s−1)−l exp(j/2(s−
1)). We compute

d
ds

[
1

(s− 1)l
exp

(
j

2(s− 1)

)]
=

−l
(s− 1)l+1

exp

(
j

2(s− 1)

)
+

− j
2(s− 1)l+2

exp

(
j

2(s− 1)

)

Grouping such terms according to the homogeneityl allows us to describe all terms
that arise in computing thek-th derivative. There are a total of 2k−1 terms and the
homogeneity of a term depends on the pattern of differentiations that produced it.
If l of these fell on the powers of (s − 1) and (k − l) on the exponential factor,
then the result has homogeneity 2(k − l) + l = 2k − l. There are

(
k−1

l

)
terms of this

homogeneity and it is easy to deduce that the coefficients of each contain a factor
of (− j/2)k−l from differentiation of the exponentials. The coefficients obtained by
differentiating the powers are no larger than (2k)l.

Now we estimate the size of a term with fixed homogeneity. As there is a trivial
estimate on [−1,0] we look for the maximum on [0,1). Observe that for a positive
value of 2k− l

log

∣∣∣∣∣∣
1

(s− 1)2k−l
exp

(
j

2(s− 1)

)∣∣∣∣∣∣ = −(2k− l) log(1− s) +
j

2(s− 1)
d
ds

log

∣∣∣∣∣∣
1

(s− 1)2k−l
exp

(
j

2(s− 1)

)∣∣∣∣∣∣ =
(2k− l)
(1− s)

− j
2(s− 1)2
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so that this expression has a unique critical point in [0,1) at j/2(s− 1) = −(2k− l).
It follows that we have the bound

∣∣∣∣∣∣
1

(s− 1)2k−l
exp

(
j

2(s− 1)

)∣∣∣∣∣∣ ≤


(
2(2k− l)

je

)2k−l

if 2(2k− l) ≥ j

e− j/2 if 2(2k− l) < j
(38)

where these maxima occur at the critical point and at 0 respectively.

For k < j/4 we use the second estimate in (38) to obtain

∣∣∣∣∣∣∣

(
d
ds

)k

exp

(
j

2(s− 1)

)∣∣∣∣∣∣∣ ≤ e− j/2
k−1∑

l=0

(
k− 1

l

)
(2k)l

( j
2

)k−l

≤ e− j/2
(
2k +

j
2

)k

≤ e− j/2 jk

Fork ≥ j/2− 1 we have 2k− j/2 ≥ k− 1 ≥ l and therefore the first estimate in (38)
is used.

∣∣∣∣∣∣∣

(
d
ds

)k

exp

(
j

2(s− 1)

)∣∣∣∣∣∣∣ ≤
k−1∑

l=0

(
k− 1

l

)
(2k)l

( j
2

)k−l (2(2k− l)
je

)2k−l

≤
(
4k
je

)k k−1∑

l=0

(
k− 1

l

)
(2k)l

( j
2

)k−l (4k
je

)k−l

=

(
4k
je

)k k−1∑

l=0

(
k− 1

l

)
(2k)l

(
2k
e

)k−l

≤
(
4k
je

)k (e+ 1
e

)k

(2k)k ≤ Ck

(
k2

j

)k

Finally if j/4 ≤ k < j/2− 1 we use both of the above

∣∣∣∣∣∣∣

(
d
ds

)k

exp

(
j

2(s− 1)

)∣∣∣∣∣∣∣ ≤
(
4k
je

)k 2k− j/2∑

l=0

(
k− 1

l

)
(2k)l

(
2k
e

)k−l

+ e− j/2
k−1∑

l=2k− j/2

(
k− 1

l

)
(2k)l

( j
2

)k−l

≤ Ck

(
k2

j

)k

+ e− j/2 jk

This estimate is then valid for allk.

In order to finish estimating (37) we need to deal with the terms involving (s+ 1)
rather than (s− 1). Observe that the pattern of differentiation is the same as for
the (s− 1) terms, but on [0,1] all the resulting terms are bounded bye− j/2 because
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negative powers of (s + 1) are trivially bounded by 1. We conclude by the same
method as above that

∣∣∣∣∣∣∣

(
d
ds

) j−k

exp

(
j

2(s+ 1)

)∣∣∣∣∣∣∣ ≤ e− j/2 j(k− j)

and can put all of our calculations together to conclude that

C−1
j

∣∣∣∣∣∣
(

d
ds

) j

χ j(s)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

j∑

k=0

(
j
k

)
·
(

d
ds

)k

exp

(
j

2(s− 1)

)
·
(

d
ds

) j−k

exp

( − j
2(s+ 1)

)∣∣∣∣∣∣∣

≤
j∑

k=0

(
j
k

)
e− j/2 j(k− j)Ck

(
k2

j

)k

+

j∑

k=0

(
j
k

)
e− j j j

≤ j je− j/2


j∑

k=0

(
j
k

)
Ck

(
k
j

)2k

j2(k− j)

 + 2je− j j j

≤ j je− j/2


j∑

k=0

(
j
k

)
Ck j2(k− j)

 + 2je− j j j

≤ j je− j/2
(
C + j−2

) j
+ 2je− j j j

≤ j je− j
(
ej/2(C + 1)j + 2j

)

Substituting into (36) and using Stirling’s formula to estimatej! ≥ j je− j
√

2π j we
have at last

|ψ j(r)| ≤
C j j je− j

j je− j
√

2π j

(
ej/2(C + 1) j + 2j

) ( 2
(r j+1 − r j)

) j+1

≤
(

c
r j+1 − r j

) j+1

where we used the fact thatC j ≤ e4 j/3. It is easily verified that we can takec = 20.

Construction

Beginning withψ0 we inductively subtract constant multiples of the functionsψ j

for j ≥ 1 so that the resulting function onI has all its moments vanish except the
one of zeroth order. The method serves as a model for our later construction of the
functionK in Lemma 17.

Call the function before thej-th stage of the inductionΨ j and setΨ0 = ψ0. The
moments ofΨ j areaj

k =
∫

I
rkΨ j(r) dr. It is clear thata0

k = µ0,k. In this notation the

j-th stage of the induction isΨ j+1 = Ψ j − aj
j+1ψ j+1, from which the moments of

Ψ j+1 are given byaj+1
k = aj

k − aj
j+1µ j+1,k.
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Observe thataj+1
j+1 = 0 becauseµ j+1, j+1 = 1. Sinceµl, j+1 = 0 for all l > j + 1 it

follows that we have

aj+1
k =



1 if k = 0

0 if 1 ≤ k ≤ j + 1

aj
k − aj

j+1µ j+1,k if k > j + 1

as was intended. Eachψ j is supported on the intervalI j and these intervals are
disjoint, so it is apparent that to prove theΨ j(r) converge all we need do is estimate
the numbersaj

j+1 and use our estimates on the functionsψ j. For this purpose we

define a sequence{bj
k} by settingb0

k = |a0
k| = |µ0,k| andbj+1

k = bj
k + bj

j+1|µ j+1,k|. It is

clear that|a0
k| ≤ b0

k for all k. Assuming inductively that|a j
k| ≤ bj

k we have

|aj+1
k | ≤ |aj

k| + |aj, j+1|µ j+1,k ≤ bj
k + bj

j+1µ j+1,k = bj+1
k (39)

and henceforth need only consider the sequence{bj
j+1}.

Estimates

Though we do not show it explicitly, the essential idea of the following estimates
is that binomial factor in theµ j,k causes terms to increase very rapidly asj andk
increase (withk > j). This implies that at any stage of the induction the dominant
terms will be from the moments of the most recently introducedψ j.

Lemma 19 For j ≥ 1 andk ≥ j, the momentsµ j,k satisfy

µ j−1,k

µ j−1, jµ j,k
≤ 2

k− j + 1
(40)

PROOF. We may use the fact thatχ j−1(s) is an even function on [−1,1] to explic-
itly compute the termµ j−1, j.

µ j−1, j =

(
j

j − 1

) ( r j − r j−1

2

) ∫ 1

−1

(
s+

r j + r j−1

r j − r j−1

)
χ j−1(s) ds= j

( r j − r j−1

2

) ( r j + r j−1

r j − r j−1

)

By the symmetry ofφ j(r) around the midpoint ofI j and the fact thatrk− j is an
increasing function we have the bound

µ j,k =

(
k
j

) ∫

I j

rk− jφ j(r) dr ≥
(
k
j

) ( r j+1 + r j

2

)k− j

and we estimateµ j−1,k using the upper endpoint of the interval:

µ j−1,k =

(
k

j − 1

) ∫

I j−1

rk− j+1φ j−1(r) dr ≤
(

k
j − 1

)
rk− j+1

j .
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Combining these we have

µ j−1,k

µ j−1, jµ j,k
≤

(
k

j−1

)
rk− j+1

j

j
(
k
j

) (
r j+r j−1

2

) (
r j+1+r j

2

)k− j

=
1

k− j + 1

(
2r j

r j + r j−1

) (
2r j

r j+1 + r j

)k− j

≤ 2
k− j + 1

Lemma 20 The sequenceb j
j+1 satisfies

b j
j+1 ≤ e2bj−1

j |µ j, j+1| ≤ e2 j
j∏

l=0

|µl,l+1| (41)

PROOF. We expandbj+1
k from its definition to obtain

bj+1
k = b j

k + bj
j+1|µ j+1,k|

= b j−1
k + bj−1

j |µ j,k| + bj
j+1|µ j+1,k|

...

= b0
k + b0

1|µ1,k| + b1
2|µ2,k| + · · · + bj

j+1|µ j+1,k|
= |µ0,k| + b0

1|µ1,k| + b1
2|µ2,k| + · · · + bj

j+1|µ j+1,k| (42)

and see that we must deal with a sum of terms of the typebl−1
l |µl,k|. Again applying

the definition we havebl−1
l |µl,l+1| = bl

l+1 − bl−1
l+1 ≤ bl

l+1, and in conjunction with the
inequality (40) from the preceding lemma we obtain forl ≥ 1

bl−1
l |µl,k| ≤ bl−1

l |µl,l+1||µl+1,k|
(

2
k− l

)

≤ bl
l+1|µl+1,k|

(
2

k− l

)

... inductively

≤ bj
j+1|µ j+1,k|

(
2j−l+1

(k− l)(k− l − 1) · · · (k− j)

)

The same method applies to estimate the first term in (42) because (40) implies
|µ0,k| ≤

(
2
k

)
|µ0,1||µ1,k| =

(
2
k

)
b0

1|µ1,k|.

Now we need only substitute into the sum (42) to find that withm = j − l

bj+1
k ≤ b j

j+1|µ j+1,k|
1 +

j∑

m=0

2m+1(k− j − 1)!
(k− j + m)!
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and in particular

bj+1
j+2 ≤ bj

j+1|µ j+1, j+2|
1 +

j∑

m=0

2m+1

(m+ 2)!

 ≤ e2bj
j+1|µ j+1, j+2|

which proves the first assertion of the lemma. The second follows from this using
induction and the definitionb0

1 = |µ0,1|.

Properties ofΨ(r ) = lim Ψj (r )

Recall that the functionsΨ j(r) were defined inductively by

Ψ0(r) = ψ0(r), Ψ j+1(r) = Ψ j(r) − aj
j+1ψ j+1(r) (43)

The functionsψ j(r) are defined on the disjoint intervalsI j, so it is immediate that the
Ψ j(r) converge pointwise to a functionΨ(r) on I that can be bounded by controlling
|aj

j+1ψ j+1|. By (39), (41) and the fact that|µl,l+1| ≤ (l + 1)r l from (34) we obtain

|aj
j+1| ≤ bj

j+1 ≤ e2 j
j∏

l=0

|µl,l+1| ≤ e2 j( j + 1)!
j∏

l=0

r l .

Multiplying this by the bound forψ j+1 we found in (35) yields forr ∈ I j+1

|Ψ(r)| ≤ |aj
j+1| |ψ j+1| ≤ e2 j( j + 1)!


j∏

l=0

r l


(

20
(r j+2 − r j+1)

) j+2

. (44)

It is not hard to discover that the rate of growth of the sequence{r j} determines the
bounds available from (44). The choicer j = Rexp

[
2 log2( j + j0)

]
from Lemma 17

is close to optimal, and we record the corresponding estimate as a lemma.

Lemma 21 With {r j} as in Lemma 17 andj0 ≥ 8 we have

j!


j−1∏

l=0

r l


(

20
(r j+1 − r j)

) j+1

≤ exp
(
C + 2 j0 log2( j + j0) − 2( j + j0) log( j + j0)

)

(45)
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PROOF. For notational purposes it will be convenient for us to work with the
logarithm of the above quantity. The relevant estimates are

log
(
r j+1 − r j

)

= log
[
T

(
exp

(
2 log2( j + j0)

)) (
exp

(
2 log2( j + j0 + 1)− 2 log2( j + j0)

))]

≥ log
[
T

(
exp

(
2 log2( j + j0)

)) (
2 log2( j + j0 + 1)− 2 log2( j + j0)

)]

= logT + 2 log2( j + j0) + log 2+ log

[(
log( j + j0 + 1)( j + j0)

) (
log

(
1 +

1
j + j0

))]

≥ logT + 2 log2( j + j0) + log 2+ log
(
2 log(j + j0)

)
+ log log

(
1 +

1
j + j0

)

≥ logT + 2 log2( j + j0) + log 4+ log log(j + j0) + log

(
log 2
j + j0

)

≥ logT + 2 log2( j + j0) + log log(j + j0) + log
(
4 log 2

) − log( j + j0) (46)

and for the product term

j−1∑

0

log r l = j logT + 2
j−1∑

0

log2(l + j0)

≤ j logT + 2
∫ j+ j0

j0

log2 x dx

= j logT + 2( j + j0) log2( j + j0) − 4( j + j0) log( j + j0)

+ 4( j + j0) − 2 j0 log2 j0 + 4 j0 log j0 − 4 j0 (47)

Combining (46), (47), and the Stirling Estimatej! ≤ c
√

j j je− j produces

log

 j!


j−1∏

l=0

r l


(

20
(r j+1 − r j)

) j+1


≤ logc− j + ( j + 1/2) log j + j logT + 2( j + j0) log2( j + j0)

− 4( j + j0) log( j + j0) + 4 j − 2 j0 log2 j0 + 4 j0 log j0
− ( j + 1) logT − 2( j + 1) log2( j + j0) − ( j + 1) log log(j + j0)
− ( j + 1) log

(
4 log 2

)
+ ( j + 1) log(j + j0)

≤ logc + 2 j0 log2( j + j0) − 2( j + j0) log( j + j0)

becausej0 ≥ 8 ≥ e2. Inserting the constantc for the Stirling estimate we obtain the
conclusion of the lemma withC = log

(√
2πe

)
.
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Lemma 21 may be combined with (44) to produce an estimate valid onI j

log |Ψ(r)| ≤ log
(|aj−1

j | |ψ j |)

≤ 2 j − 2 + C + 2 j0 log2( j + j0) − 2( j + j0) log( j + j0)
≤ −( j + j0 + 1) log(j + j0 + 1)

for all sufficiently large j. However logr ≤ logT + 2 log2( j + j0 + 1) on I j, so we
see that for all sufficiently large values ofr

log |Ψ(r)| ≤ −
(
1
2

log
r
T

)1/2

exp

(
1
2

log
r
T

)1/2

(48)

This is certainly sufficiently rapid decay to ensure integrability against the polyno-
mials, and an application of the dominated convergence theorem shows

∫
rkΨ(r) dr = lim

j→∞

∫
rkΨ(r) dr =


1 if k = 0

0 if k = 1,2,3, . . .
(49)

so that we have found a smooth function with vanishing moments and exponential
decay on the half lineI . Our method is cruder than some of the known techniques,
see for example Lemma 1 on page 182 of [18], and we pay a price in the rate
at which the function decays. In compensation we have gained substantial control
over the regions in which cancelation occurs for individual monomials.

Functions on Subsets ofSn−1

The functionsψ j(r) can be used to select for the radial growthr j, but inRn there
are many monomials with this rate of growth that need to be treated separately.
This is achieved by constructing functions on a fixed subset of the unit sphereSn−1

with the property that they vanish when integrated against any monomial except
the specific one desired. In our construction we work with angular variables rather
than the restrictions of monomials toSn−1.

Functions on an Arc ofS1

Lemma 22 Let Θ be an arc of angular length|Θ| in the unit circleS1. For a fixed
J ∈ N and for eachl ∈ Z with |l| < J there is a smooth functionGl(θ) with support
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in Θ such that

∫

S1
Gl(θ)e

ikθ dθ =


1 if k = l

0 if |k| ≤ J andk , l
(50)

|Gl(θ)| ≤
(

C
|Θ|

)2J+2

(51)

PROOF. Without loss of generality we may identifyΘ with the interval [0, |Θ|] in
the angular variable. LetJ andl be fixed.

PartitionΘ usingλ j = (2 j+1)|Θ|/(4J+2). For eachφ ∈ [−|Θ|/(4J+2), |Θ|/(4J+2)
)

consider also the partition translated byφ. Writing zj = eiλ j we define the Lagrange
interpolating polynomials corresponding to these partitions

Pj(z) =

2J∏

k=0,k, j

z− zk

zj − zk
, Pj,φ(z) =

2J∏

k=0,k, j

z− eiφzk

eiφzj − eiφzk
= Pj(e

−iφz).

For all integersk with |k| ≤ J we see thatei(J+k)θ is a polynomial of degree at most
2J in z = eiθ, so it is determined by its values at the points of the partition and

ei(J+k)θ = zJ+k =

2J∑

j=0

(
eiφzj

)(J+k)Pj,φ(z) =

2J∑

j=0

ei(J+k)(λ j+φ)Pj(e
i(θ−φ)).

Multiplying by e−i(J+l)θ and integrating over [0,2π] we have

∫ 2π

0
ei(k−l)θ dθ =

∫ 2π

0

2J∑

j=0

ei(J+k)(λ j+φ)e−i(J+l)θPj(e
i(θ−φ))

so that setting

aj(φ) =
eiJ(λ j+φ)

2π

∫ 2π

0
Pj(e

i(θ−φ))e−i(J+l)θ dθ

we obtain
2J∑

j=0

aj(φ)eik(λ j+φ) =


1 if k = l

0 if 0 ≤ |k| ≤ J

which may be viewed as the solution to a disctretized version of the problem on the
partition{λ j + φ}. We can now complete the proof by integrating against a function
η(φ) ∈ C∞ that is supported on

[−|Θ|/(4J + 2), |Θ|/(4J + 2)
]
. Write θ ∈ Θ in its

unique formθ = λ j +φ for φ in the given interval, and setGl(θ) = aj(φ)η(φ). This is
a product of smooth functions on the intervals

(
λ j − |Θ|/(4J + 2), λ j + |Θ|/(4J + 2)

)
,

and at the points where these intervals meet we see thatη(φ) and all its derivatives
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are zero, soGl is smooth. Moreover

∫

Θ

Gl(θ)e
ikθ dθ =

2J∑

j=0

∫ λ j+|Θ|/(4J+2)

λ j−|Θ|/(4J+2)
Gl(θ)e

ikθ dθ

=

2J∑

j=0

∫ |Θ|/(4J+2)

−|Θ|/(4J+2)
a j(φ)η(φ)ei(λ j+φ)k dφ

=


1 if k = l

0 if 0 ≤ |k| ≤ J

With this definition ofG(θ) it is easily verified that

|Gl(θ)| ≤ ‖η(φ)‖L∞
2π

∫ 2π

0
|Pj(e

iλ)|dλ (52)

and since we may chooseη with |η(φ)| ≤ C(2J + 1)/|Θ|, we can establish (51) by
estimatingPj. All terms in the numerator ofPj are bounded individually by 2 forz
on the unit circle, and the denominator is clearly largest for the casej = J+1 when
we obtain

2J∏

k=0,k, j

(zj − zk) =

( |Θ|
4J + 2

)2J+1

(J!)2 ≥
( |Θ|
4J + 2

)2J+1

2πJ2J+1e−2J ≥ 2πe

( |Θ|
6e

)2J+1

where we used thatJ! >
√

2πJJJe−J andJ/(2J + 1) ≥ 1/3. From these and (52)

|Gl(θ)| ≤ C(2J + 1)
4π2e|Θ|

(
12e
|Θ|

)2J+1

≤
(

C
|Θ|

)2J+2

Functions on subsets ofSn−1

We use the coordinate system (x1, . . . , xn) on Rn to define generalized spherical
coordinates (θ1, . . . , θn−1) on the unit sphereSn−1 according to

ξ j =



cosθ1 if j = 1

cosθ j
∏ j−1

k=1 sinθk if 1 < j < n∏n−1
k=1 sinθk if j = n

Notice thatθ j ∈ [0, π] for j < n − 1 while θn−1 ∈ [0,2π), and that the Jacobian
relating the new coordinates to the old isJ =

∏n−2
k=1 sinn−k−1 θk.

Suppose we have an angular cube, i.e. a set of the form{(θ1, . . . , θn−1) : θ j ∈ Θ j}
with eachΘ j an arc of the same angular length. We use|Θ| for the length of the
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cube. ForJ ∈ N and a multi-indexα = (α1, . . . , αn−1) with all |α j | ≤ J, letGα j (θ) be
as in Lemma 22. The product of these functions has the properties

∫

Sn−1


n−1∏

j=1

Gα j (θ j)




n−1∏

j=1

eiα jθ j

 dθ1 · · · dθn−1 =

n−1∏

j=1

∫ π

0
Gα j (θ j)e

iα jθ j dθ j

=


1 if α = β

0 if someβ j ≤ J andα , β∣∣∣∣∣∣∣
n−1∏

j=1

Gα j (θ j)

∣∣∣∣∣∣∣ ≤
n−1∏

j=1

(
C
|Θ|

)2(J+1)

=

(
C
|Θ|

)2(n−1)(J+1)

In what follows we wish to integrate with respect to the restrictiondσ(x) of dx1 . . . dxn

to Sn−1 rather than with respect to the angular variables, for which reason we define

Hα =
1
J

n−1∏

j=1

Gα j (θ j)

It is not difficult to show that a set of the formB(ξ, λ) ∩ Sn−1 supports functions of
this type, and that we may assumeJ ≥ Cλn−2. Observe first that

|J| =
n−2∏

k=1

| sinθk|n−k−1 ≥


n−2∏

k=1

| sinθk|


n−2

=
(
ξ2

n−1 + ξ2
n

)(n−2)/2
(53)

and that{ξ2
n−1 + ξ2

n ≥ c1λ
2} ∩ (B(ξ, λ) ∩ Sn−1) ⊃ B(ξ̃, c2λ) ∩ Sn−1 for some absolute

constantsc1 andc2. This latter set clearly contains an angular cube of length at least
c3(n)λ and we obtain the bound onJ from (53). We summarize our findings as a
lemma.

Lemma 23 Let Λ = B(ξ, λ) ∩ Sn−1 whereξ ∈ Sn−1 and λ < 1. Fix J ∈ N and
let α = (α1, . . . , αn) satisfy |α j | ≤ J for all j. Then there isHα ∈ C∞(Sn−1) and
supported onΛ such that

∫

Sn−1
Hα(x) exp

i
n−1∑

j=1

β jθ j

 dσ(x) =


1 if β = α

0 if some|β j | ≤ J andβ , α
(54)

|Hα| ≤
(C
λ

)(n−1)(2J+3)
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3.1 The FunctionK (x)

Building Blocks and Bounds

The hypothesis of Lemma 17 givesΓ = ∪Γ j where

Γ j =

{
r j ≤ |x| ≤ r j+1,

x
|x| ∈ Λ j

}
and Λ j = Sn−1 ∩ B(ξ j , λ)

with λ independent ofj. For eachj and multi-indexα with all |α j | ≤ j we set
J = 2 j + 2 and apply Lemma 23 onΛ j to define functionsH j,α. Let the functions
ψ j(r) be as in (32) and set

F( j,α)(r, ξ) = ψ j(r)H j,α(ξ).

These functions areC∞, supported onΓ j, and by Lemmas 18 and 23 we have

∣∣∣F( j,α)(r, ξ)
∣∣∣ ≤

(C
λ

)(n−1)(4j+7) ( 20
r j+1 − r j

) j+1

(55)

If we denote the moments with respect to the functionsrkeiβθ by

M( j,α),(k,β) =

∫

Rn
F( j,α)(r, θ)r

keiβθ dσ dr

then we derive from (33) and Lemma 23 that

M( j,α),(k,β) =



0 if some|βl | ≤ 2 j + 2 andβ , α, or if k < j

1 if β = α andk = j

µ j,k if β = α andk > j

(56)

In the remaining case where all|βl | ≥ 2 j + 3 andk ≥ j we have from (23) that

∣∣∣M( j,α),(k,β)

∣∣∣ ≤ µ j,k

(C
λ

)(n−1)(4j+7)

(57)

however in what follows we will only be interested in those momentsM( j,α),(k,β) for
whichk ≥ maxl |βl |. For these we usek ≥ 2 j + 3 to rewrite (57) as

∣∣∣M( j,α),(k,β)

∣∣∣ ≤ µ j,k

(C
λ

)4(n−1)(k− j−1)

. (58)
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Construction

As in the one dimensional case we inductively construct a function with vanishing
moments. SetK0(r, θ) = F0,0(r, θ) and define

N j
(k,β) =

∫

Rn
K j(r, θ)rkeiβθ dσ dr (59)

K j+1(r, θ) = K j(r, θ) −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,β)F( j+1,α)(r, θ) (60)

so thatN j+1
( j+1,β) = 0 for all β satisfying|βl | ≤ j + 1, l = 1, . . . , n − 1. By (56) the

functionsF( j+1,α) do not affect the momentsN j+1
(k,β) for k ≤ j, and consequently

N j+1
(k,β) =


1 if k = 0 andβ = (0, . . . , 0)

0 if k ≤ j + 1 and|βl | ≤ j + 1 for l = 1, . . . , n− 1
(61)

There are finitelyF j,α for eachj, all of which are supported onΓ j. Since the setsΓ j

are disjoint the functionsK j(x) have a pointwise limit functioñK(x) supported on
Γ. We show this limit is integrable against polynomials and has vanishing moments.

Estimates

Our model is the estimation scheme for the one dimensional case. Notice that the
moment sequenceN j

(k,β) evolves according to the induction

N j+1
(k,β) = N j

(k,β) −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,α)M( j+1,α),(k,β) (62)

We are only interested in moments (k, β) for which k ≥ maxl |βl |. In this situation
we may compare (56) and (58) to see that all of the momentsM( j+1,α),(k,β) occurring
in the sum satisfy

∣∣∣M( j+1,α),(k,β)

∣∣∣ ≤ µ j+1,k

(C
λ

)4(n−1)(k− j−2)

(63)

It is also easily seen that the number of terms in this sum is (2j + 3)n−1. These
observations suggest defining a new sequence by

P0
k = max

{∣∣∣M(0,0),(k,β)

∣∣∣ : |βl | ≤ k for all l = 1, . . . ,n− 1
}

(64)

Pj+1
k = Pj

k + Pj
j+1µ j+1,k

(C0

t

)4(n−1)(k− j−2)

(65)

whereC0 = 2C is twice the constant in (63) and is fixed from here onward. Our
previous work shows thatC0 depends only upon the dimensionn.
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The benefit of this new sequence is that it dominates the sequenceN j
(k,β) but will be

much simpler to analyze. We record this as a lemma.

Lemma 24 For all j, k, andβ with |βl | ≤ k, l = 0, . . . , n− 1 we have
∣∣∣N j

(k,β)

∣∣∣ ≤ Pj
k.

PROOF. For j = 0 this is obvious from the definition. Assuming the truth of the
estimate for all superindices up toj we proceed inductively, looking at two cases.
If k ≤ 2 j + 4 then|βl | ≤ 2 j + 4 and so by (56) allM( j+1,α),(k,β) = 0. Therefore

∣∣∣N j+1
(k,β)

∣∣∣ =

∣∣∣∣∣∣∣∣
N j

(k,β) −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,α)M( j+1,α),(k,β)

∣∣∣∣∣∣∣∣
=

∣∣∣N j
(k,β)

∣∣∣ ≤ Pj
k ≤ Pj+1

k

If k ≥ 2 j + 5 we use the bound (63) to obtain

∣∣∣N j+1
(k,β)

∣∣∣ =

∣∣∣∣∣∣∣∣
N j

(k,β) −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,α)M( j+1,α),(k,β)

∣∣∣∣∣∣∣∣

≤
∣∣∣N j

(k,β)

∣∣∣ +

∣∣∣∣∣∣∣∣

n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,α)

∣∣∣∣∣∣∣∣
µ j+1,k

(C
λ

)4(n−1)(k− j−2)

≤ Pj
k + (2 j + 3)n−1Pj

j+1µ j+1,k

(C
λ

)4(n−1)(k− j−2)

≤ Pj
k + Pj

j+1µ j+1,k

(C0

λ

)4(n−1)(k− j−2)

= Pj+1
k

In the last step we used thatk ≥ 2 j + 5 whence 4(k − j − 2) ≥ 4 j + 12 and so
(2 j + 3)n−1 is certainly dominated by 2(n−1)(4j+12) = 24(n−1)(k− j−2).

Our estimates for{Pj
k} closely mimic those for the one dimensional case. The key

result is

Lemma 25 The off-diagonal terms of the sequence{Pj
k} satisfy the estimate

Pj
j+1 ≤ C

e2A( j−1)

Aj−8

j∏

l=0

µl,l+1 (66)

whereA =

(C0

λ

)4(n−1)

andC is independent ofn andλ.
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PROOF. ExpandingPj+1
k from the definition (65) we have

Pj+1
k = Pj

k + Pj
j+1µ j+1,kA

(k− j−2)

= Pj−1
k + Pj−1

j µ j,kA
(k− j−1) + Pj

j+1µ j+1,kA
(k− j−2)

... (67)

= P0
k + P0

1µ1,kA
k−2 + P1

2µ2,kA
k−3 + · · · + Pj

j+1µ j+1,kA
(k− j−2) (68)

From (65) we seePl
l+1 = Pl−1

l+1 + Pl−1
l µl,l+1 whencePl−1

l µl,l+1 ≤ Pl
l+1. Using (40) and

this repeatedly we estimate the general term of (68)

Pl−1
l µl,k ≤

(
2

k− l

)
Pl−1

l µl,l+1µl+1,k

≤
(

2
k− l

)
Pl

l+1µl+1,k

...

≤
(

2
k− l

) (
2

k− l − 1

)
· · ·

(
2

k− j

)
Pj

j+1µ j+1,k

=
(k− j − 1)!2( j−l+1)

(k− l)!
Pj

j+1µ j+1,k (69)

It is also straightforward from (56), (57), and (40) to see that

P0
k = max

{∣∣∣M(0,0),(k,β)

∣∣∣ : |βl | ≤ k for all l = 1, . . . ,n− 1
}

≤ A7

(
2
k

)
P0

1µ1,k

so that applying (69) for the casel = 1 we have

P0
k ≤ A7 (k− j − 1)!2( j+1)

k!
Pj

j+1µ j+1,k (70)

Now we may substitute the estimates (69) and (70) into the expression (68) forPj+1
k

and obtain

Pj+1
k = P0

k +

j+1∑

l=1

Pl−1
l µl,kA

(k−l−1)

≤
A7 (k− j − 1)!2( j+1)

k!
+

j+1∑

l=1

(k− j − 1)!2( j−l+1)

(k− l)!
A(k−l−1)

 Pj
j+1µ j+1,k
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We only need this result for the casek = j + 2 where it reduces to

Pj+1
j+2 ≤


A72( j+1)

( j + 2)!
+

j+1∑

l=1

(2A)( j−l+1)

( j + 2− l)!

 Pj
j+1µ j+1, j+2

=


A72( j+1)

( j + 2)!
+

1
2A

j+1∑

m=1

(2A)m

m!

 Pj
j+1µ j+1, j+2

≤



1
2A

e2APj
j+1µ j+1, j+2 if j ≥ 6(

A7 +
1

2A
e2A

)
Pj

j+1µ j+1, j+2 if j < 6

ProvidingA ≥ 10 the above factor is bounded by (e2A/A) independently ofj, so
inserting a small constant to resolve this case we can inductively reduce to

Pj+1
j+2 ≤ C

e2A j

Aj
P1

0

j+1∏

l=1

µl,l+1 ≤ C
e2A j

Aj−7

j+1∏

l=0

µl,l+1

Properties of the Kernel

On Γ j+1 we use (60) and the fact that the only non-zeroF(l,α)(r, ξ) havel = j + 1 to
see that

K̃(x) = −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,β)F( j+1,α)(r, ξ)

By (24) this implies
∣∣∣K̃(x)

∣∣∣ ≤ (2 j + 3)n−1Pj
j+1

∣∣∣F( j+1,α)(r, ξ)
∣∣∣, so that substituting the

bounds (55) and (66) and writing both in terms ofA, then using (34) gives

∣∣∣K̃(x)
∣∣∣ ≤ C(2 j + 3)n−1e2A( j−1)

Aj−8

( A
24(n−1)

) j+1 (
20

r j+2 − r j+1

) j+2 j∏

l=0

µl,l+1

≤ C
A7

e2A( j−1)

(
20

r j+2 − r j+1

) j+2 j∏

l=0

(l + 1)r l

=
C
A7

e2A( j−1)( j + 1)!


j∏

l=0

r l


(

20
r j+2 − r j+1

) j+2

This is now very similar to the situation encountered in our one dimensional con-
struction. Withr j = T exp

[
2 log2( j + j0)

]
we can directly apply Lemma 21 to ob-

tain for x ∈ Γ j

log
∣∣∣K̃(x)

∣∣∣ ≤ C − 7 logA + 2A( j − 2) + 2 j0 log2( j + j0) − 2( j + j0) log( j + j0)

≤ −( j + j0 + 1) log(j + j0 + 1) (71)
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provided j is sufficiently large. As log|x| ≤ logT + 2 log2( j + j0 + 1) on Γ j, we
obtain

log
∣∣∣K̃(x)

∣∣∣ ≤ −
(
1
2

log
|x|
T

)1/2

exp

(
1
2

log
|x|
T

)1/2

(72)

for all sufficiently large|x|. This rate of decay ensures̃K(x) is integrable against all
functions having at most polynomial growth in the variable|x|, and by (61) and the
dominated convergence theorem we have

∫

Rn
K̃(r, ξ)rkeiβθ dσ(θ) dr =


1 if k = 0 andβ = (0, . . . , 0)

0 if k ∈ N \ {0} and all|βl | ≤ k
(73)

Since any monomialxα may be written

xα = r |α|
∑

β

aβe
iβθ

wherer = |x| and eachβ occurring in the sum satisfies|βl | ≤ |α| for l = 1,2, . . . , n,
we see that̃K has vanishing moments of all orders. Asxα is real-valued the same is
true of the real part Re(̃K), so defining

K(x) =
Re

(
K̃(x)

)
|x|n−1

we have thatK ∈ C∞(Rn) is supported onΓ and

∫

Rn
K(x)xα dx =

∫

Rn
Re(K̃(x))xαdσ dr =


1 if α = (0, . . . , 0)

0 if α ∈ Nn \ {(0, . . . , 0)}

Comparing (72) with (30) we find that|K(x)| ≤ |x|1−nκ(|x|). This completes the
proof of Lemma 17 and therefore Theorem 16.

4 Extension on a Whitney Cube

Given f ∈ Lp
k(Ω) andQ ∈ W2 we define a functionEQ f on (17/16)Q and identify

some of its properties.

Definition of the extension

Let φ(x) be aC∞ cutoff function such thatφ ≡ 1 on{dist(x, ∂Ω) ≤ λ} andφ ≡ 0 on
{dist(x, ∂Ω) ≥ 2λ}, whereλ depends only onn, ε andδ. It is clear from the Leibnitz
rule that

‖φ f ‖Lp
k (Ω) ≤ C(n, ε, δ)‖ f ‖Lp

k (Ω)
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for all f ∈ Lp
k(Ω). Moreover an extension ofφ f toRn \Ω also extendsf . It follows

that to prove Theorem 8 we need only treat the functions supported near∂Ω. In
particular we henceforth assume thatf ≡ 0 on all Whitney cubesS ∈ W1 with
l(S) ≥ εδ/(100

√
n).

Denote the Whitney cubes fromW2 with l(Q) ≤ εδ/(200n) byW3. On these we
will defineEQ( f ) by convolution against a function of the type in Theorem 16, but
first we need some preliminaries.

Corresponding toQ we have a chain of cubes{S j} as in Lemma 12 and a twist-
ing coneΓQ contained in∪S j. We translate the centerxQ of Q to the origin and
rescale by (l(Q))−1, using tildes to indicate the scaled quantities. For exampleΓ̃Q =

(l(Q))−1(ΓQ − xQ) is a twisting cone centered at the origin.

From (10) we see that at distance ˜r from the origin there is ˜y with |ỹ| = r̃ and
B(ỹ, η|ỹ|) ⊂ Γ̃Q provided ˜r ∈ [R0,R1(l(Q))−1], whereR0, R1 andη depend only on
n, ε andδ, and we can takeR1 = εδ/10. By adjoining a piece of a cone tõΓQ we
can make this property true for all ˜r ≥ R0. Let B(ỹ, η|ỹ|) be the ball inΓ̃Q at radius
|ỹ| = R1(l(Q))−1 and define

Γ̃∗Q =

(
Γ̃Q ∩

{
R0 ≤ |x̃| ≤ R1

l(Q)

})
∪

{
x̃ : |x̃| ≥ R1

l(Q)
and

R1x
|x̃|l(Q)

∈ B(ỹ, η|ỹ|)
}

In keeping with our tilde notation we haveΓ∗Q = l(Q)(Γ̃∗Q + xQ), and the result of
this construction is shown in Figure 4.

✱

Q

Q

Γ

Γ

Q

Fig. 2. The setΓ∗Q

We record a trivial consequence of Lemma 13.

Lemma 26 If ỹ ∈ Γ̃Q is such that
(
xQ+ l(Q)ỹ

) ∈ ΓQ∩S j, then for anyx ∈ (
17/16

)
Q

we have
(
x + l(Q)ỹ

) ∈ S j−1 ∪ S j ∪ S j+1.

Now Theorem 16 applies tõΓ∗Q so we have a smooth functioñKQ(ỹ) supported on
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Γ̃∗Q with |K̃Q(ỹ)| ≤ κ(|ỹ|)|ỹ|1−n and vanishing moments

∫

Rn
ỹαK̃Q(ỹ) =


1 if α = (0, . . . , 0)

0 if α ∈ Nn \ {(0, . . . , 0)} (74)

whereC andT depend only onn, ε andδ. Notice that ifx ∈ (17/16)Q andy ∈ S j

then by Lemma 26 and the linear growth (10) we have

∣∣∣∣∣∣K̃Q

(
y− x
l(Q)

)∣∣∣∣∣∣ ≤
(

l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

)
. (75)

We wish to defineEQ f as a convolution off andKQ, but must first arrange thatf
is defined on all ofΓ∗Q. This is done by setting

fQ(x) =


f (x) if |x− xQ| ≤ R1

0 otherwise
(76)

which is a smooth continuation off from ΓQ to Γ∗Q because the Whitney cubes that
intersectΓQ at radiusR1 have length at leastεδ/(10

√
n) and thereforef ≡ 0 there

by assumption. Now forx ∈ (
17/16

)
Q let

EQ f (x) =



∫

Rn
fQ(x + l(Q)ỹ)K̃Q(ỹ) dỹ if Q ∈ W3

0 if Q ∈ W2 \W3

(77)

By Lemma 26 this only involves the values offQ on a subset of∪S j where we
know fQ ≡ f . In particular it would suffice to integrate over ˜y ∈ Γ̃Q becausefQ ≡ 0
whenỹ ∈ Γ̃∗Q \ Γ̃Q, so forQ ∈ W3 we may write

EQ f (x) =

∫

Γ̃Q

f (x + l(Q)ỹ)K̃Q(ỹ) dỹ. (78)

Useful Estimates forKQ

To assist in the flow of the proof and avoid repetition we list some estimates for
sums and integrals of̃KQ.

Lemma 27 With κ(t) as defined in(30)we haveC = C(n, ε, δ,q) such that

∞∑

j=m

2q jκ(2j) ≤ C 2qmκ(2m)
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PROOF. By (30) there are constantsc1, c2, andc3 depending only onn, ε andδ,
such that

∞∑

j=m

2q jκ(2j) ≤ 2qmκ(2m)c1

∫ ∞

m
exp

[
c2q(t −m) − c3

(
t1/2ec3t1/2 −m1/2ec3m1/2)]

dt

= 2qmκ(2m)c1

∫ ∞

0
exp

[
c2qs− c3

(
(s+ m)1/2ec3(s+m)1/2 −m1/2ec3m1/2)]

ds

= 2qmκ(2m)I (m,q)

whereI (m,q) is finite for anym ≥ 0 andq ∈ R and depends continuously onm.
However ifm> c−2

3 then convexity implies

c3(s+ m)1/2ec3(s+m)1/2 − c3m
1/2ec3m1/2 ≥ c3sec3s1/2 − e

so that in this caseI (m,q) ≤ eeI (0,q) and the result follows withC equal to the
larger ofeeI (0,q) and the maximum ofI (m,q) overm ∈ [0, c−2

3 ].

Corollary 28 ∫

Rn

∣∣∣K̃Q(ỹ)
∣∣∣ dỹ ≤ C(n, ε, δ)

PROOF. Integrate radially by dividingRn into concentric annuli from radius 2j to
2j+1. As |K̃Q(ỹ)| ≤ κ(|ỹ|)|ỹ|1−n and is supported on [R0,∞), whereR0 depends onn,
ε andδ, we see that

∫

Rn

∣∣∣K̃Q(ỹ)
∣∣∣ dỹ ≤ C(n, ε, δ)

∞∑

j=0

2j(1−n)κ(2j+1)

and the result follows from Lemma 27.

Estimates for Individual Cubes

The following lemma allows control of the behavior ofEQ on the cubeQ.

Lemma 29 There are constantsC = C(n, ε, δ, k, p) such that
∑

Q∈W2

‖DαEQ f ‖pLp(Q) ≤ C
∥∥∥Dα f (z)

∥∥∥p

Lp(Ω)
if 1 ≤ p < ∞ (79)

‖DαEQ f ‖L∞(Q) ≤ C‖Dα f ‖L∞(Ω) if p = ∞ (80)

PROOF. The estimate is trivial for those cubes whereEQ is identically zero, so we
may restrict our attention toQ ∈ W3. As f and its derivatives are locally integrable
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andK̃Q has rapid decay we may differentiate within the integral (78) to obtain

DαEQ f (x) =

∫

Γ̃Q

Dα f (x + l(Q)ỹ)K̃Q(ỹ) dỹ (81)

Applying Corollary 28 tof ∈ Lp
k(Ω) disposes of the casep = ∞.

∣∣∣DαEQ f (x)
∣∣∣ ≤

∥∥∥Dα f
∥∥∥

L∞(Ω)

∫

Rn

∣∣∣K̃Q(ỹ)
∣∣∣ dỹ

≤ C
∥∥∥Dα f

∥∥∥
L∞(Ω)

with a constantC = C(n, ε, δ). For the remainder of the proof we will therefore
assume that 1≤ p < ∞.

By Hölder’s inequality and Corollary 28 applied to (81) we obtain after a change
of variables

∣∣∣DαEQ f (x)
∣∣∣p ≤

(∫

Γ̃Q

∣∣∣Dα f (x + l(Q)ỹ)
∣∣∣p∣∣∣K̃Q(ỹ)

∣∣∣ dỹ

) (∫

Rn

∣∣∣K̃Q(ỹ)
∣∣∣ dỹ

)p−1

≤ C
∫

Γ̃Q

∣∣∣Dα f (x + l(Q)ỹ)
∣∣∣p∣∣∣K̃Q(ỹ)

∣∣∣ dỹ

=
C

l(Q)n

∫

∪S j

∣∣∣Dα f (z)
∣∣∣p

∣∣∣∣∣∣K̃Q

(
z− x
l(Q)

)∣∣∣∣∣∣ dz.

Using (75) to estimate
∣∣∣K̃Q

(
(z− x)/l(Q)

)∣∣∣ for pointsz ∈ S j andx ∈ Q this becomes

∥∥∥DαEQ f
∥∥∥p

Lp(Q)
≤ C

1
l(Q)n

∫

Q

∑

j

(
l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

) ∫

S j

∣∣∣Dα f (z)
∣∣∣p dz dx

≤ C
∑

j

(
l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

) ∫

S j

∣∣∣Dα f (z)
∣∣∣p dz

because the integrand is then independent ofx ∈ Q.

It is now possible to sum over allQ ∈ W3. LetG(S) be the set of all cubesQ ∈ W3

such that the twisting cone corresponding toQ intersects the Whitney cubeS of Ω.
and recall (27) in which we bounded the number of cubes of sizel(Q) = 2−ml(S) in
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G(S) by C(n, ε)2nm. This yields

∑

Q∈W2

∥∥∥DαEQ f
∥∥∥p

Lp(Q)
≤ C

∑

Q∈W3

∑

S j∩ΓQ

(
l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

) ∫

S j

∣∣∣Dα f (z)
∣∣∣p dz

≤ C
∑

S∈W1

∥∥∥Dα f (z)
∥∥∥p

Lp(S)

∑

Q∈G(S)

(
l(Q)
l(S)

)n−1

κ

(
l(S)
l(Q)

)

≤ C
∑

S∈W1

∥∥∥Dα f (z)
∥∥∥p

Lp(S)


∑

m

2nm2−m(n−1)κ
(
2m)



≤ C
∑

S∈W1

∥∥∥Dα f (z)
∥∥∥p

Lp(S)

= C
∥∥∥Dα f (z)

∥∥∥p

Lp(Ω)

where in the penultimate step we used the bound from Lemma 27.

Estimates for Adjacent Cubes

Our goal is an estimate needed to prove compatibility of the extensions for pairs of
adjacent cubes.

Lemma 30 LetN(Q′) be the collection of cubes fromW2 that are adjacent toQ′.
If α is a multi-index with|α| ≤ k then for1 ≤ p < ∞

∑

Q′∈W2

∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)pl(Q′)−|α−β|p

∥∥∥Dβ(EQ f − EQ′ f )
∥∥∥p

Lp(Q′∩(17/16)Q)

≤ C(n, ε, δ, k, p)
∥∥∥∇k f (y)

∥∥∥p

Lp(Ω)
(82)

while for p = ∞ we have forx ∈ Q′

l(Q′)−|α−β|
∣∣∣Dβ(EQ f (x) − EQ′ f (x))

∣∣∣ ≤ C ‖∇k f ‖L∞(Ω) (83)

PROOF. If either Q or Q′ is inW2 \ W3 then their adjacency ensures that both
have length at leastεδ/(50n). In that case (8) shows that all cubes in the chains
coveringΓQ andΓQ′ have length at least 2εδ/(25

√
n). Our assumption on the sup-

port of f then guaranteesf ≡ 0 on the twisting cones, whenceEQ ≡ 0 ≡ EQ′. No
estimate is needed here, so we henceforth assume bothQ andQ′ are inW3.

Recall that the twisting coneΓQ corresponding toQ has a central curveγQ and
at eachz ∈ γQ a radiuss(z). The initial point ofγ is calledz0 and the ballB0 is
B0 = B(z0, s(z0)). Analogous definitions are made forγ′,z′0, andB′0. Before Lemma
15 we defined the polynomial fitted to a function on a set; here we letPQ be the
degree (k−1) polynomial fitted tof onB0 andPQ′ be the corresponding polynomial
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for f on B′0. It will be convenient to denote convolution with the scaling parameter
l(Q) by

g ∗ K̃Q(x) =

∫

Rn
g(x + l(Q)ỹ)K̃Q(ỹ) dỹ (84)

and to express the difference to be estimated as

EQ f (x)−EQ′ f (x) =
(
( fQ−PQ)∗K̃Q

)
+
(
PQ∗K̃Q

)−(PQ′∗K̃Q′
)−(( fQ′−PQ′)∗K̃Q′

)
. (85)

If 1 ≤ p < ∞ we take the derivativeDβ, the p-th power, and the integral over
(Q′ ∩ (17/16)Q). Using the fact that there are only three terms in the sum we have

∥∥∥Dβ(EQ f − EQ′ f
)∥∥∥p

Lp(Q′∩(17/16)Q)

≤ C(p)
∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q

)∥∥∥∥
p

Lp((17/16)Q)
+ C(p)

∥∥∥∥Dβ(( fQ′ − PQ′) ∗ K̃Q′
)∥∥∥∥

p

Lp(Q′)

+ C(p)
∥∥∥∥Dβ(PQ ∗ K̃Q − PQ′ ∗ K̃Q′

)∥∥∥∥
p

Lp(Q′)

The two types of terms in this expression are individually estimated in Lemmas 31
and 32; substituting from these completes the proof in the case 1≤ p < ∞.

When p = ∞ we directly apply (85) and theL∞ estimates of Lemmas 31 and 32.
The result has an additionall(Q′)k−|α| factor, but this is bounded because|α| ≤ k and
the cubes are fromW3.

Polynomial Terms

Lemma 31 There are constantsC = C(n, ε, δ, k, p) such that for1 ≤ p < ∞
∑

Q′∈W1

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q′)−|α−β|p

∥∥∥∥Dβ(PQ ∗ K̃Q − PQ′ ∗ K̃Q′
)∥∥∥∥

p

Lp(Q′)
≤ C

∥∥∥∇k f (y)
∥∥∥p

Lp(Ω)

while for p = ∞

l(Q′)−|α−β|
∥∥∥∥Dβ(PQ ∗ K̃Q − PQ′ ∗ K̃Q′

)∥∥∥∥
L∞(Q′)

≤ C
∥∥∥∇k f (y)

∥∥∥
L∞(Ω)

l(Q′)k−|α|.

PROOF. Expanding the polynomialPQ(x + l(Q)ỹ) as a polynomial inl(Q)ỹ and
using the property (74) of the kernelK̃Q we see

PQ ∗ K̃Q(x) =

∫

Rn
PQ(x + l(Q)ỹ)K̃Q(ỹ) dỹ = PQ(x) (86)

Similarly PQ′∗K̃Q′(x) = PQ′(x) and it suffices to estimate terms
∥∥∥Dβ(PQ−PQ′

)∥∥∥
Lp(Q′).

At this point we could appeal to Lemma 3.2 of [11] in which precisely this is
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proved, but for the convenience of the reader we instead sketch a proof using
Lemma 15.

From (8) and (9) we see that the diameter ofB′0 is comparable both tol(Q′) and
to dist(Q′, B′0). This ensures that the finite dimensional Banach spacesLp

k(Q′) and
Lp

k(B′0) have equivalent norms, so we may write

∥∥∥Dβ(PQ − PQ′
)∥∥∥

Lp(Q′) ≤ C
∥∥∥Dβ(PQ − PQ′

)∥∥∥
Lp(B′0)

≤
∥∥∥Dβ( f − PQ′

)∥∥∥
Lp(B′0)

+
∥∥∥Dβ( f − PQ

)∥∥∥
Lp(B′0)

≤ Cs′(z′0)
k−|β|‖∇k f ‖Lp(B′0) +

∥∥∥Dβ( f − PQ
)∥∥∥

Lp(B′0)
(87)

where we have used the Poincaré inequality (12) onB′0. Now DβPQ is precisely
the polynomial fitted toDβ f on B0. Let {T j} be the chain of cubes connecting the
centers of the ballsB0 and B′0. By Lemma 10 we have a bound on the number
of cubes in the chain and know that all of them satisfyC−1 ≤ l(T j)/l(Q′) ≤ C.
Restricting to the case 1≤ p < ∞ and applying Lemma 15 yields

∥∥∥Dβ( f − PQ
)∥∥∥

Lp(B′0)
≤ C

(
l(Tm)

)k−|β|−1
m∑

j=1

l(T j)

(
l(Tm)
l(T j)

)n/p ∥∥∥∇k f (y)
∥∥∥

Lp(T j )

≤ C l(Q′)k−|β|
m∑

j=1

∥∥∥∇k f (y)
∥∥∥

Lp(T j )

After combining this with (87) we may use Hölder’s inequality and the bound on
the number of cubes in the chain to estimate thep-th power by

∥∥∥Dβ(PQ − PQ′
)∥∥∥p

Lp(B′0)
≤ Cs′(z′0)

(k−|β|)p‖∇k f ‖pLp(B′0) + C l(Q′)(k−|β|)p
m∑

j=1

∥∥∥∇k f (y)
∥∥∥p

Lp(T j )

≤ C l(Q′)(k−|β|)p
m∑

j=1

∥∥∥∇k f (y)
∥∥∥p

Lp(T j )
(88)

where we have also useds′(z′0) ≤ Cl(Q′).

To perform the summation in the statement of the lemma we need the estimate
(26). It is apparent that for appropriate choices of the constants in (25) our chain
{Tl} joins cubesS andS′ from F (Q′), whereupon we may calculate from (88) and
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(26)

∑

Q′∈W3

∑

Q∈N(Q)

∑

0≤β≤α
l(Q′)−|α−β|p

∥∥∥PQ ∗ K̃Q − PQ′ ∗ K̃Q′
∥∥∥p

Lp(Q′)

≤ C
∑

Q′∈W3

∑

0≤β≤α
l(Q′)−|α−β|pl(Q′)(k−|β|)p

∑

S,S′∈F (Q′)

∑

Tl (S,S′)

‖∇k f ‖pLp(T)

≤ C
∑

Q′∈W3

∑

S,S′∈F (Q′)

∑

Tl (S,S′)

‖∇k f ‖pLp(T)l(Q
′)(k−|α|)p

≤ C
∑

Q′∈W3

∑

S,S′∈F (Q′)

∑

Tl (S,S′)

‖∇k f ‖pLp(T)

≤ C
∑

T∈W1

‖∇k f ‖pLp(T) = C ‖∇k f ‖pLp(Ω)

Observe that in the third to last step we used that|α| ≤ k and that there is a bound on
the size of cubesQ′ ∈ W3. It is easy to verify that all constants introduced depend
only uponn, ε, δ, k andp, so this concludes the proof for the case 1≤ p < ∞.

To complete the proof forf ∈ L∞k (Ω) we use (15) of Lemma 15 to write

∥∥∥Dβ(PQ − PQ′
)∥∥∥

L∞(B′0)
≤

∥∥∥Dβ( f − PQ′
)∥∥∥

L∞(B′0)
+

∥∥∥Dβ( f − PQ
)∥∥∥

L∞(B′0)

≤ Cs′(z′0)
k−|β|‖∇k f ‖L∞(B′0) + C l(Q′)k−|β|‖∇k f ‖L∞(Ω)

≤ l(Q′)k−|β|‖∇k f ‖L∞(Ω)

because both the diameter ofB′0 and the separation ofB0 from B′0 are comparable
to l(Q′). Substituting into (87) and multiplying byl(Q′)−|α−β| then gives the result.

Terms involving(f − PQ)

Lemma 32 There are constantsC = C(n, ε, δ, k, p) such that for1 ≤ p < ∞
∑

Q′∈W3

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)−|α−β|p

∥∥∥∥Dβ(( fQ−PQ)∗K̃Q
)∥∥∥∥

p

Lp((17/16)Q)
≤ C

∥∥∥∇k f (y)
∥∥∥p

Lp(Ω)
(89)

while for p = ∞

l(Q)−|α−β|
∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q

)∥∥∥∥
L∞((17/16)Q)

≤ C
∥∥∥∇k f (y)

∥∥∥
L∞(Ω)

l(Q)k−|α|. (90)
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PROOF. We first differentiate within the integral (77) and make the change of
variablesz = (x + l(Q)ỹ) to obtain

Dβ(( fQ − PQ) ∗ K̃Q
)
(x) =

∫

Rn
Dβ( fQ − PQ

)
(x + l(Q)ỹ)K̃Q(ỹ) dỹ

=
1

l(Q)n

∫

Rn
Dβ( fQ − PQ

)
(z)K̃Q

(
z− x
l(Q)

)
dz

By Lemma 26 we know that all points at which̃KQ
(
(z− x)/l(Q)

)
, 0 lie either

in the union of cubesS j from the chain coveringΓQ, or within distance
√

nl(Q)
of Γ∗Q \ ΓQ. It is possible from the definition ofΓ∗Q to define a collection{Tm} of
cubes such that eachTm has length comparable to its separation fromQ and so
∪Tm contains all points within distance

√
nl(Q) of Γ∗Q \ ΓQ. All of the constants of

comparability depend onn, ε, andδ and in particular it is evident that (75) is still
valid for these new cubes. We may then adjoin{Tm} to the chain{S j} so that we
have a chain covering all ofΓ∗Q. Abusing notation we also call the new chain{S j}.
Not all cubes in this chain are Whitney cubes ofΩ, but in our working we need
only keep in mind thatfQ ≡ 0 on all those that are not. Using this convention, (75)
implies

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣ ≤
∑

j

(
l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

) ∫

S j

∣∣∣∣Dβ( fQ − PQ
)
(z)

∣∣∣∣ dz
l(Q)n

. (91)

Now suppose 1≤ p < ∞ and apply (14) of Lemma 15 with the exponentp = 1 to
the integrals. This gives

∫

S j

∣∣∣∣Dβ( fQ − PQ
)
(z)

∣∣∣∣ dz
l(Q)n

≤ C
l(Q)n

(
l(S j)

)k−|β|−1
j∑

m=1

l(Sm)

(
l(S j)

l(Sm)

)n ∥∥∥∇k f (y)
∥∥∥

L1(Sm)

= C
(
l(S j)

)k−|β|−1
(
l(S j)

l(Q)

)n j∑

m=1

l(Sm)
?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy

This is even valid on the cubes that we appended to the chain, bearing in mind that
fQ ≡ 0 on those cubes. Substituting back into (91)

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣

≤ C
∑

j

(
l(S j)

l(Q)

)
κ

(
l(S j)

l(Q)

) (
l(S j)

)k−|β|−1
j∑

m=1

l(Sm)
?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy

= C l(Q)k−|β|
∑

j

(
l(S j)

l(Q)

)k−|β|
κ

(
l(S j)

l(Q)

) j∑

m=1

l(Sm)
l(Q)

?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy

= C l(Q)k−|β|
∑

m

l(Sm)
l(Q)

?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy


∞∑

j=m

(
l(S j)

l(Q)

)k−|β|
κ

(
l(S j)

l(Q)

)
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however the number ofS j of a given scale is bounded by constants depending on
n, ε andδ, so applying Lemma 27

∞∑

j=m

(
l(S j)

l(Q)

)k−|β|
κ

(
l(S j)

l(Q)

)
≤ C(n, ε, δ, k)

(
l(Sm)
l(Q)

)k−|β|
κ

(
l(Sm)
l(Q)

)

and hence

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣ ≤ C l(Q)k−|β|
∑

m

(
l(Sm)
l(Q)

)k−|β|+1

κ

(
l(Sm)
l(Q)

) ?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy

Taking thep-th power we may use Ḧolder’s inequality, then the estimate from
Lemma 27 withq = (kp− |β|p + p − n)/(p − 1), and then Jensen’s inequality to
conclude

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣p

≤ C l(Q)(k−|β|)p

∞∑

m=1

(
l(Sm)
l(Q)

)n

κ

(
l(Sm)
l(Q)

) (?

Sm

|∇k fQ(y)| dy

)p


∞∑

m=1

(
l(Sm)
l(Q)

)q

κ

(
l(Sm)
l(Q)

)
p−1

≤ C l(Q)(k−|β|)p
∞∑

m=1

(
l(Sm)
l(Q)

)n

κ

(
l(Sm)
l(Q)

) ?

Sm

|∇k fQ(y)|p dy

≤ Cl(Q)(k−|β|)p−n
∞∑

m=1

κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k fQ(y)|p dy

As the estimate is independent ofx, integration over
(
17/16

)
Q merely increases the

constant marginally and cancels a factor ofl(Q)−n. Thus

∥∥∥Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∥∥∥p

Lp((17/16)Q)
≤ Cl(Q)(k−|β|)p

∞∑

m=1

κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k fQ(y)|p dy.

(92)
If we multiply (92) by l(Q)−|α−β|p and sum as in (89) we obtain

∑

Q′∈W3

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)−|α−β|p

∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q
)∥∥∥∥

p

Lp((17/16)Q)

≤ C
∑

Q′∈W3

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)(k−|α|)p

∑

Sm∩Γ∗Q,∅
κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k fQ(y)|p dy

but we have bounds for the number of neighborsQ ∈ N(Q′) and the valuesβ with
0 ≤ β ≤ α and|α| ≤ k. MoreoverQ ∈ W3 hasl(Q)(k−|α|)p ≤ 1 for |α| ≤ k. If we write
W4 for the collection of cubes that are neighbors of cubes fromW3 the estimate
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then reduces to

∑

Q′∈W3

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)−|α−β|p

∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q
)∥∥∥∥

p

Lp((17/16)Q)

≤ C
∑

Q∈W4

∑

Sm∩Γ∗Q,∅
κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k fQ(y)|p dy

Note that sincefQ ≡ 0 on the cubesS j that do not intersectΓQ we may leave those
out of the inner sum. The cubes that remain are Whitney cubes ofΩ on which
fQ ≡ f . Reversing the order of summation we find that for eachS ∈ W1 we sum
overQ ∈ G(S), whereG(S) is as in (27). It was proven in (27) that the number of
these cubes having scale 2− j l(S) is bounded by a constant multiple of 2n j, so

∑

Q′∈W3

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)−|α−β|p

∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q
)∥∥∥∥

p

Lp((17/16)Q)

≤ C
∑

Q∈W4

∑

Sm∩ΓQ,∅
κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k f (y)|p dy

= C
∑

S∈W1

∫

S
|∇k f (y)|p dy

∑

Q∈G(S)

κ

(
l(Sm)
l(Q)

)

≤ C
∑

S∈W1

∫

S
|∇k f (y)|p dy

∞∑

j=0

2n jk(2j)

≤ C
∑

S∈W1

∫

S
|∇k f (y)|p dy

≤ C
∥∥∥∇k f (y)

∥∥∥p

Lp(Ω)

where the penultimate estimate is from Lemma 27.

As has been true throughout, the proof is easier in the casep = ∞. Returning to
(91) we need only use (15) of Lemma 15 to deduce

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣ ≤ ‖∇k f ‖L∞(Ω)

∑

j

(
l(S j)

l(Q)

)
l(S j)

k−|β|κ
(
l(S j)

l(Q)

)

≤ C l(Q)k−|β|‖∇k f ‖L∞(Ω)

∑

j

(
l(S j)

l(Q)

)k−|β|+1

κ

(
l(S j)

l(Q)

)

≤ C l(Q)k−|β|‖∇k f ‖L∞(Ω)

where we used the fact that only finitely manyS j of a given scale intersect the
twisting cone, and the estimate from Lemma 27. Multiplying byl(Q)−|α−β| gives the
desired result.
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5 Proof of Theorem 8

Definition and Bounds for the Extension

Using standard techniques we may construct a smooth partition of unity corre-
sponding to the Whitney decompositionW2. In particular, from Stein [18] Chapter
VI Section 1.3 there areC∞ functionsΦQ such that

∑
ΦQ ≡ 1 on the interior of

Ωc, there are bounds 0≤ ΦQ ≤ 1, the support of eachΦQ is in (17/16)Q, and
the derivatives satisfy|DαΦQ| ≤ c(|α|)l(Q)−|α|. Fix such a partition and define for
f ∈ Lp

k(Ω)

E f (x) =


f (x) if x ∈ Ω∑

Q∈W2
ΦQ(x)EQ f (x) if x ∈ (Ωc)o

The definition of locally uniform implies that∂Ω has no density points and is there-
fore of measure zero, soE f is defined almost everywhere. Moreover the properties
we have established for theEQ allow us to bound the Sobolev norm of this function
on (Ωc)o . We begin by computing

DαE f = Dα(EQ′ f +
∑

Q∈W2

(EQ f − EQ′ f )ΦQ
)

= DαEQ′ f +
∑

Q∈W2

∑

0≤β≤α
Dβ(EQ f − EQ′ f ) Dα−βΦQ. (93)

Using the notationN(Q′) for the cubes neighboringQ′ and inserting the bound on
the derivatives of the partition of unity we obtain for 1≤ p < ∞

‖DαE f ‖pLp(Q′)

≤
(
‖DαEQ′ f ‖Lp(Q′)

+
∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)l(Q′)−|α−β|‖Dβ(EQ f − EQ′ f )‖Lp(Q′∩(17/16)Q)

)p

≤ C(n, k, p) ‖DαEQ′ f ‖pLp(Q′)

+ C(n, k, p)
∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)pl(Q′)−|α−β|p‖Dβ(EQ f − EQ′ f )‖pLp(Q′∩(17/16)Q)

where the latter inequality uses the Hölder estimate and the fact that the number of
terms in the sum depends only onn andk. If we then sum over allQ′ ∈ W2 and
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use the bounds (79) and (82) we find
∥∥∥DαE f

∥∥∥p

Lp
((

Ωc
)o)

≤ C
∑

Q′∈W2

‖DαEQ′ f ‖pLp(Q′)

+
∑

Q′∈W2

∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)l(Q′)−|α−β|‖Dβ(EQ f − EQ′ f )‖Lp(Q′∩(17/16)Q)

≤ C
∥∥∥Dα f (z)

∥∥∥p

Lp(Ω)
+ C

∥∥∥∇k f (y)
∥∥∥p

Lp(Ω)

with constants that now depend onn, k, p, ε andδ. Summing over|α| ≤ k bounds
theLp

k((Ωc)o) norm ofE f by theLp
k(Ω) norm of f . A similar bound is valid in the

p = ∞ case, where we instead take absolute values and the bounds on derivatives
of ΦQ into (93), use (80), (83), and the fact that the summation over multi-indices
and neighboring cubes only introduces a constant factor, to obtain

|DαE f | ≤ |DαEQ′ f | +
∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)l(Q′)−|α−β||Dβ(EQ f − EQ′ f )|

≤ C‖Dα f ‖L∞(Ω) + C
∥∥∥∇k f (y)

∥∥∥
L∞(Ω)

(94)

and then sum over|α| ≤ k.

What remains to be proven is thatE f is in Lp
k(Rn). This may be thought of as

checking that the pieces ofE f “join up” correctly at∂Ω, and is not too difficult to
verify in the case thatf ∈ C∞ with bounded derivatives. We reduce to this case
using the following result of Jones (Proposition 4.4 in [11]).

Proposition 33 (Jones)For fixedη > 0, k, p ∈ [1,∞), and f ∈ Lp
k(Ω) there is

g ∈ C∞(Rn) ∩ Lp
k(Ω) andM ∈ R with

‖ f − g‖Lp
k (Ω) ≤ Cη and |Dαg| ≤ M for 0 ≤ |α| ≤ k (95)

while for fixedf ∈ L∞k (Ω) there isg ∈ C∞(Rn) ∩ L∞k (Ω) with

‖ f − g‖L∞k−1(Ω) ≤ Cη and ‖g‖L∞k (Ω) ≤ C‖ f ‖L∞k (Ω) (96)

Fix α with |α| < k. For f satisfying the conditions of Proposition 33 we see from
(95) or (96) thatDαE f is Lipschitz in a neighborhood of any point ofΩ, and by
virtue of theL∞ estimate (94) it is also Lipschitz in a neighborhood of any point
of (Ωc)o. We claim that this still holds in a neighborhood of any point of∂Ω, and
therefore thatDαE f is locally Lipschitz. It clearly suffices that there is a constant
s> 0 such that ifx ∈ (

Ωc)o andy ∈ Ω with |x− y| < s then
∣∣∣Dα(E f (x) − E f (y))

∣∣∣ ≤ C|x− y|. (97)

Let s = εδ/200n, fix x ∈ (
Ωc)o andy ∈ Ω with |x − y| < s. Let Q ∈ W3 containx
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andxQ be its center, and setyQ to be the initial point of the curveγ around which
we have the twisting coneΓQ. Integration against̃KQ preserves polynomials, so in
particular it preserves the constantL = Dα f (yQ). SinceE f (xQ) = EQ f (xQ) we may
compute

∣∣∣DαE f (xQ) − Dα f (yQ)
∣∣∣ =

∣∣∣∣∣
∫

Rn

(
Dα fQ(xQ + l(Q)ỹ) − L

)
K̃Q(ỹ) dỹ

∣∣∣∣∣

≤
∫

Rn

∣∣∣Dα fQ(xQ + l(Q)ỹ) − L
∣∣∣∣∣∣K̃Q(ỹ)

∣∣∣ dỹ

Reasoning as in the proof of theL∞ estimate for Lemma 32 we see that
∣∣∣Dα fQ(x+l(Q)ỹ)−L

∣∣∣ =
∣∣∣Dα fQ(xQ+l(Q)ỹ)−Dα f (yQ)

∣∣∣ ≤ C
∣∣∣xQ+l(Q)ỹ−yQ

∣∣∣k−|α|‖∇k f ‖L∞(Ω)

and this may be integrated against|K̃Q| to provide
∣∣∣DαE f (xQ) − Dα f (yQ)

∣∣∣ ≤ C l(Q)k−|α|‖∇k f ‖L∞(Ω) ≤ C |x− y|k−|α|‖∇k f ‖L∞(Ω) (98)

From Lemma 12 we know|x− xQ| ≤ dist(xQ,Ω) ≤ |x− y|, and combining this with
our bound on|DαE f |

L∞
((

Ωc
)o) shows that

∣∣∣E f (x) − E f (xQ)
∣∣∣ ≤ C‖∇k f ‖L∞(Ω)|x− y|. (99)

Also from this lemma we have|xQ − yQ| ≤ 20
√

nl(Q) ≤ C|x − y|, so |yQ − y| ≤
25
√

n|x− y| < δ. We may therefore connecty to yQ with a chain of cubes and apply
theL∞ estimate in Lemma 15 to conclude

∣∣∣Dα f (y) − Dα f (yQ)
∣∣∣ ≤ C‖∇k f ‖L∞(Ω)|x− y|k−|α|

This may be combined with (98), (99), and the fact|x− y| < 1 to prove (97).

The above reasoning shows that anyf satisfying the conclusions of Proposition 33
has locally Lipschitz derivatives of all orders less thank and is thereforek-times
differentiable almost everywhere. We conclude thatf ∈ Lp

k(Rn) and

‖E f ‖Lp
k (Rn) ≤ C‖ f ‖Lp

k (Ω)

so thatE is a bounded linear operator on this space of functions. Proposition 33
shows that we can approximate (or weakly approximate in the casep = ∞) any
g ∈ Lp

k(Ω) by such f , and consequently thatEg is in Lp
k(Rn) and satisfies the same

estimate. This completes the proof of Theorem 8.
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