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Abstract

In image decompositions, one is interested in decomposing f into u+v where u and
v have different features. In a variational approach, such a decomposition is achieved
by solving the following variational problem

inf
(u,v)∈X1×X2

{tF1(u) + F2(v) : f = u+ v} ,

where F1 and F2 are positive functionals defined on some function spaces X1 and X2

respectively. Often the scale parameter t is fixed a prior. In this paper, we address the
problem of selecting the scale parameter t in a multiscale fashion, and introduce the
notion of interpolating scales that are stable with respect to the functional or energy
being minimized. The motivation is coming from Peetre’s K-functional in interpolation
theory.

1 Introduction

In image decompositions ([26], [22], [25], [4], [9], [17], [15], [14], among others), a given
image f is decomposed into u + v where u and v belong to some function spaces X1

and X2 respectively. The choice of X1 and X2 determines the smoothing properties of
u and v. In a variational approach, f is decomposed into u(t) + v(t) via the variational
problem

inf
(u,v)∈X1×X2

{tF1(u) + F2(v) : f = u+ v} , (1)

for some parameter t > 0. Here, F1 and F2 are positive functionals defined on some
function spaces X1 and X2 respectively. We are interested in the study of selecting the
parameter t in the above minimization problem. For each t > 0, suppose there exists
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(u(t), v(t)) ∈ X1 × X2 that is a minimizer of (1). Then {u(t)}t>0 can be viewed as
a multi-scale representation of f and the above functional can be viewed as diffusion
(linear or nonlinear) process. The parameter t is often referred to as the global scale
parameter. The study of scale parameters (local or global) in images has been shown to
be very useful as a tool for feature extraction with applications to object recognition,
image segmentation and decompositions, among others.

We first recall a few methods for extracting local features.

Definition 1 (Dilating Consistency Property). We say the local scales have the
dilating consistency property if the number of local scales of f at x is invariant under
dilation. Moreover, denote by Tf (x) the set of local scales of f at x. Then it holds that

Tdδf (x) = {δst : t ∈ Tf (x)}, for some s < 0. (2)

T. Lindeberg [18], [18], [19] represents u(t) as a convolution of the Gaussian kernel
Kt with f . Special scale-space features are defined as the set consisting of points
(x, t) ∈ Rn × R+ such that t∂u∂t (x, t) is a local max or local min. In [20], D. Lowe
developed the SIFT detector by incorporating the vector consisting of partial derivatives
of u at the scale-space feature locations. This detector has shown to be very effective
in distinguishing features and objects in images.

Brox-Weickert in [7] study local scales of f at x using the total variation flow, where
{u(t)}t>0 are solutions of the evolution equation

ut = div(
∇u
|∇u|

), u(0) = f.

For each x ∈ Rn, they define the local scale m(x) of f at x (single scale) using the
average change of |∂tu|. In other words,

mf (x) =
2T∫ T

0 |∂tu| dt
,

where T is a tuning parameter. They provide texture segmentation as an application
with very good segmentation results. However, there are two draw backs to this ap-
proach: The parameter T is user defined, and the dilating consistency property is not
satisfied. In some way, the local scales depend on the choice of T which is a global
parameter.

In [27], Strong-Chan proposed to study scales using the Rudin-Osher-Fatemi diffu-
sion [26]. Fix a T > 0, let u be the minimizer of J given by

J (u) =

∫
|Du|+ 1

2T
‖f − u‖2L2 .

Suppose f = χBr , where B is the ball of radius r centered at the origin. Let the scale
s(x) of x ∈ B defined as

s(x) =
|Br|
P (Br)

=
‖χBr‖L1

‖χBr‖ ˙BV

(3)
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Then it can be shown [27] that for small T (which depends on the G-norm of f [22])
the minimizer u has the same discontinuity set as f and for all x ∈ Br,

|u(x)− f(x)| = T

s(x)
.

Motivated from this example, the local scale of a general f at x is defined [27] as

s(x) =
T

|u(x)− f(x)|
.

This definition of local scales depend on T (and hence u). The minimizer u can be
viewed as a ”denoised” shape that contains x.

In [21], Luo-et al study local scales by looking at a collection of embedding shapes
that contain x and look for a shape that is most contrasted. Then the local scale of f at
x is defined as in (3) replacing Br with the most contrasted shape. In other words, let
{f1(x), · · · , fN(x)(x)} be a collection of shapes (connected components) that contain x
with the property that fi(x) ⊂ fi+1(x) for all i = 1, · · · , N(x). fi(x) is defined as the
connected component that contains x such that

fi(x) ⊂ {x ∈ Rn : f(x) ≥ λi}, for some λi > 0.

Denote by I(fi) = λi, and define C(fi) = |I(fi+1) − I(fi)|. Then the most contrasted
shape containing x is defined as

f̂(x) = arg max
fi,i=1,··· ,N(x)

C(fi).

However as commented by the authors in [21], for natural images C(fi) is typically
equal to 1 in the presence of noise and blur. Thus, the most contrasted shape f̂(x)
is meaningless. To overcome this problem, they propose to sum up the contrasts of
shapes as follows. For i ≥ 1, the accumulated contrasts are recursively computed as

C(fi(x)) =

{
C(fi−1(x)) + C(fi(x)) if |fi(x)| − |fi−1(x)| ≤ TP (fi−1(x)),

C(fi(x)) otherwise,
(4)

where T is some fixed (global) parameter and P (fi) denotes the perimeter of the shape
fi. The relation

|fi(x)| − |fi−1(x)| ≤ TP (fi−1(x)) (5)

is not invariant under dilation. In other words, if f is dilated by a factor δ > 0, the
equation (5), applying to the dilated shapes, becomes (assuming in R2)

(|fi(x)| − |fi−1(x)|) ≤ (δT )P (fi−1(x)).

Note that the contrasts in the image is invariant under dilation. Thus the definition of
C(fi(x)) defined in (4) does not satisfy the dilating consistency property.

In these methods, one obtain a single meaningful scale at each location x. Realizing
that x may be embedded in multiple scales, P. Jones and the first author [16] recently
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propose a new method for extracting a vector of scales at each location x. This notion
of local scales is further characterized based on the visibility level of the scales and
their separation from other scales. The local scales of f at x is computed by measuring
the deviation of f from a linear function near x at different scales t’s. This multiscale
analysis is intimately related to the theory of wavelets. Let φ(x) be any approximation
to the identity. In particular, consider

φ(x) = e−π|x|
2
.

Here we have
∫
Rn φ(x) dx = 1. For each t > 0, define

Kt(x) = t−n/2φ(x/
√
t) = (t)−n/2e−π

|x|2
t .

Let ψt(x) = t∂Kt∂t , x ∈ Rn, and define

Sf(x, t) = ψt ∗ f(x) =

∫
Rn
ψt(x− y)f(y) dy. (6)

Since ψt has zero mean and zero first moments, we see that if f is linear, then Sf(x, t) =
0 for all t > 0 and x ∈ Rn. Thus the quantity |Sf(x, t)| measures how f deviates from
a linear function of scale t near x. Note that Sf is invariant under addition by a linear
function. The local scales of f at x are defined as the set Tf (x) consisting of t > 0
such that |Sf(x, t)| is a local maxima. It can be shown that the set of local scales
Tf (x) satisfies the dilating consistency property. This notion of local scales is further
characterized based on the visibility level of the scales and their separation from other
scales.

Passing from local to global, one can consider the global Sf defined by

Sf(t) = ‖ψt ∗ f(x)‖Lp =

∥∥∥∥∂u∂t
∥∥∥∥
Lp
, for some 1 ≤ p <∞, (7)

or using some weighted Lp spaces. Now the global scales can be defined as the local
maxima of Sf(t).

See also Tadmor-Nezzar-Vese [28], Aujol-et al [5], and Vixie-et al [30] for other
notions of global scales. In Section 4, we will provide a discussion comparing our
method with that of Vixie-et al [30].

In this paper, instead of using (7) to analyze the global scales of f , we approach
this problem from an interpolation theory point of view. In Section 4, we will compare
the method using (7) with the proposed method for non-smooth functionals.

We recall the following definition of function spaces and their properties from [6]
and [29]. Let X1 and X2 be two Banach spaces that are continuously embedded in
some Hausdorff topological vector space X . If X1 ⊂ X2, then one can take X = X2.
We say f ∈ X1 +X2, if

‖f‖X1+X2 = inf
(u,v)∈X1×X2

{‖u‖X1 + ‖v‖X2 : f = u+ v} <∞.

For each f ∈ X1 +X2 and t > 0, the K-functional and the L-functional are defined
as

K(f, t,X2, X1) = inf
(u,v)∈X1×X2

{t‖u‖X1 + ‖v‖X2 : f = u+ v} , (8)
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and for any fixed 1 ≤ p1, p2 <∞,

L(f, t,X2, X1) = inf
(u,v)∈X1×X2

{
t‖u‖p1X1

+ ‖v‖p2X2
: f = u+ v

}
. (9)

Note that L also depends on p1 and p2, but for simplicity we remove them from the
variables of L. From now on, p1 and p2 are assumed to be fixed values in [1,∞).

It is easy to see that for each positive t, t‖u‖X1 is an equivalent norm in X1. In
other words,

min(t, 1)‖u‖X1 ≤ ‖u‖X1 ≤ max(t, 1)‖u‖X1 .

This shows that K(f, t,X2, X1) gives an equivalent norm for X1 + X2, for all t > 0.
The limiting spaces ∞X1 +X2 and X1 +∞X2 are defined as

∞X1 +X2 = {f ∈ X1 +X2 : ‖f‖∞X1+X2 := lim
t→∞

K(f, t,X2, X1) <∞}, and

X1 +∞X2 = {f ∈ X1 +X2 : ‖f‖X1+∞X2 := lim
t→∞

K(f, t,X1, X2) <∞}.

In real interpolation theory, the space∞X1 +X2 is known as the Gagliardo completion
of X2 in X1 +X2 with

X2 ⊂ ∞X1 +X2 ⊂ X1 +X2.

Similarly the space X1 +∞X2 is the Gagliardo completion of X1 in X1 +X2 with

X1 ⊂ X1 +∞X2 ⊂ X1 +X2.

Note that since
K(f, t,X1, X2) = tK(f, t−1, X2, X1),

the norm in X1 +∞X2 can be written as

‖f‖X1+∞X2 = lim
t→0

t−1K(f, t,X2, X1).

Next, we would like to recall the real interpolating spaces which will be crucial in
our study of scales. For θ ∈ (0, 1), the Banach interpolating space (X2, X1)θ,∞ ([6],
[29]), is defined as

(X2, X1)θ,∞ =

{
f ∈ X1 +X2 : ‖f‖(X2,X1)θ,∞ = sup

0<t<∞
t−θK(f, t,X2, X1) <∞

}
. (10)

Equivalently, these interpolating function spaces can be defined in terms of L-functional
defined in (9). Let γ ∈ (0, 1) and 1 ≤ p ≤ ∞ be related by

p = γp1 + (1− γ)p2, and θ = γ
p1

p
. (11)

Then the Banach interpolating space (X2, X1)θ,∞ can be defined in terms of the L-
functional as

(X2, X1)θ,∞ =

{
f ∈ X1 +X2 : ‖f‖(X2,X1)θ,∞ =

[
sup

0<t<∞
t−γL(f, t,X2, X1)

]1/p

<∞

}
.

(12)
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The Banach spaces (X2, X1)θ,∞ are intermediate spaces between X1∩X2 and X1 +X2.
In other words, for all 0 < θ < 1,

X1 ∩X2 ⊂ (X2, X1)θ,∞ ⊂ X1 +X2. (13)

If in addition, X1 ⊂ X2, then for all 0 < θ1 < θ2 < 1,

(X2, X1)θ1,∞ ⊂ (X2, X1)θ2,∞. (14)

The study of selecting the parameters t’s in (8) and (9) is amount to finding u(t)’s
which give an efficient multiscale representation of f . For each f ∈ X1 + X2 and
θ, γ ∈ (0, 1) and t > 0, we define

Kf(t, θ) = t−θK(f, t). (15)

and
Lf(t, θ) = t−γL(f, t). (16)

In this paper, we are interested in analyzing the properties of K(t, θ) and L(t, θ)
which we claim to contain information about scales. We also introduce a notion of
stability for scales coming from these diffusions.

2 Interpolating scales

When there is no need to address X1 and X2 explicitly, for simplicity, we write

K(f, t) = K(f, t,X2, X1), L(f, t) = L(f, t,X2, X1), etc.

First we would like to show some basic properties for K(f, t) and L(f, t). The
following Lemma provides some useful regularity properties and its proof is outlined in
[29] and [6]. To make the paper self contained, we provide its proof here.

Lemma 1. For each t > 0, the functional K(f, t) is increasing, continuous, and con-
cave. Moreover, K(f, t) is differentiable almost everywhere, and the points where the
derivative exists satisfies

0 ≤ dK(f, t)

dt
≤ K(f, t)

t
. (17)

The same results also hold for the L(f, t).

Proof. Let 0 < t1 ≤ t2 <∞, and let f = u+ v be any decomposition with u ∈ X1 and
v ∈ X2. Then

K(f, t1) ≤ t1‖u‖X1 + ‖v‖X1 ≤ t2‖u‖X1 + ‖v‖X1 .

Taking the infimum over all decompositions f = u+ v, we have

K(f, t1) ≤ K(f, t2),

which shows that K(f, t) is increasing. In particular,

t1K(f, t2) ≤ t1 [t2‖u‖X1 + ‖v‖X2 ] ≤ t2 [t1‖u‖X1 + ‖v‖X2 ] .
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Since the decomposition f = u+ v is arbitrary, this implies

t1K(f, t2) ≤ t2K(f, t1). (18)

Hence,

0 ≤ K(f, t2)−K(f, t1) ≤ t2 − t1
t1

K(f, t1) ⇒ K(f, t2)−K(f, t1)

t2 − t1
≤ K(f, t1)

t1
,

which shows (17) by taking t2 → t1 and replacing t1 with t. To show the concavity of
K, let t1, t2 > 0 and t = α1t1 + α2t2 where α1, α2 > 0 and α1 + α2 = 1. Let f = u+ v
be any decomposition of f with u ∈ X1 and v ∈ X2. Then

α1K(f, t1) + α2K(f, t2) ≤ α1(t1‖u‖X1 + ‖v‖X2) + α2(t2‖u‖X1 + ‖v‖X2)

= (α1t1 + α2t2)‖u‖X1 + (α1 + α2)‖v‖X2 = t‖u‖X1 + ‖v‖X2 ,

which holds for all decompositions f = u+ v. Taking the infimum over all decomposi-
tions f = u+ v, we have

α1K(f, t1) + α2K(f, t2) ≤ K(f, t).

This shows that K is concave. A concave and increasing function must be continuous.
Moreover, a concave function is both left and right differentiable and hence differentiable
almost everywhere.

For each f ∈ X1 + X2, a direct consequence of Lemma 1 is the following property
for K(t, θ).

Corollary 1. For each θ ∈ (0, 1), Kf(t, θ) (defined in (15)) is continuous and differen-
tiable almost everywhere. Moreover suppose f ∈ (X2, X1)θ,∞, then at the points where
the derivative exists, we have∣∣∣∣ ∂∂tK(t, θ)

∣∣∣∣ ≤ t−θ−1(1 + θ)K(f, t) ≤ 1 + θ

t
‖f‖(X2,X1)θ,∞ . (19)

By a change of variable let τ = loga t for some a > 1, then we have∣∣∣∣ ∂∂τK(τ, θ)

∣∣∣∣ ≤ C‖f‖(X2,X1)θ,∞ , with C =
2

ln(a)
. (20)

The same results also hold for L(t, θ).

Remark 1. Before defining interpolating scales, we would like to make a heuristic remark
on the interpolating space (X2, X1)θ,∞. Suppose X1 = ˙BV and X2 = Lp, 1 ≤ p < ∞.
For the image f in figures 1 and 2, we expect that f ∈ (Lp, ˙BV )θ0,∞ for some θ0 close
to 0, which shows that (Lp, ˙BV )θ0,∞ ≈ ˙BV . Here we use the notation “≈” to mean
“approximating”. On the other hand, for an image f in figures 3 and 4, we expect that
f ∈ (Lp, ˙BV )θ1,∞ for some θ1 close to 1, which indicates that (Lp, ˙BV )θ1,∞ ≈ Lp. Thus
the regularity of f determines the parameter θ. Recall we have

‖f‖(Lp, ˙BV )θ,∞
= sup

t>0

{
K(t, θ) = t−θK(f, t, Lp, ˙BV )

}
,
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where K(f, t, Lp, ˙BV ) is concave and a.e. differentiable. The weighted function t−θ,
for θ ∈ (0, 1), determines the prominent scale t∗ = arg maxt>0K(t, θ). Small (large) θ
penalizes large (small) scales less than large (small) θ. Here, we assume that the readers
are familiar with the homogeneous space ˙BV of bounded variation. The norm ‖u‖ ˙BV
is also known as the total variation of u. We refer to [3] for an in depth discussion of
the space BV and its homogeneous version ˙BV .

From now on, we denote by Sf(t, θ) eitherK(t, θ) or L(t, θ). Suppose f ∈ (X2, X1)θ,∞
for all θ ∈ (0, 1). Thus Sf(t, θ) is bounded for all θ ∈ (0, 1). Motivated from the previ-
ous remark, we have the following definition for interpolating scales.

Definition 2. Let X1 and X2 be Banach spaces. Suppose f ∈ X1 + X2. Let Sf(t, θ)
be K(t, θ) defined in (15) (or L(t, θ) defined in (16)). For each fixed θ, denote by Tf,θ
the set of t > 0 values at which Sf(t, θ) is a local maximum (as a function of t).

• The (global) interpolating scales of f are defined as Tf = ∪θ∈(0,1)Tf,θ.

• For each t ∈ Tf , we say t is a stable interpolating scale if there exists I ⊂ (0, 1)
such that |I| > 0 and t ∈ Tf,θ for all θ ∈ I. Here, |I| denotes the Lebesgue measure
(length) of the set I in R.

• For each t ∈ Tf , denote by If,t the maximal open subset in (0, 1) such that t ∈ Tf,θ
for all θ ∈ If,t. We say t ∈ Tf is δ-absolutely-stable if |If,t| > δ.

• Let δ∗ = sup{|If,t| : t ∈ Tf}. Suppose δ∗ > 0. Then we say t ∈ Tf is δ-relatively-
stable if |If,t|/δ∗ > δ.

Remark 2. Consider the K-functional given by

K(f, t, Lp, ˙BV ) = inf
(u,v)∈ ˙BV×Lp

{
t‖u‖ ˙BV + ‖v‖Lp : f = u+ v

}
,

and for all θ ∈ (0, 1) we have

Sf(t, θ) = t−θK(f, t, Lp, ˙BV ).

We expect that the image f in figure 1 belong to (Lp, ˙BV )θ,∞ for θ small (and hence by
(14) for all θ ∈ (0, 1)). On the other hand, the image f in figure 3 should only belong to
(Lp, ˙BV )θ,∞ for θ close to 1. The regularity of f determines the parameter θ which in
turn determines the preference of the interpolating scale t. In other words, if θ is close
to 1 (or 0), then small (or large) t > 0 is weighted more to be chosen as an interpolating
scale, respectively. Thus, the parameter θ determines the interpolating scale t. Stable
interpolating scales are those that arise from the local maximum of Sf(t, θ) for more
than one θ.

When the image f in consideration is clear, we will drop the subscript f . I.e.,
we write It for If,t, etc. The following examples provide intuitions and meanings to
interpolating scales coming from different choices of K and L-functionals.
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2.1 Examples

Example 1. In the first example we would like to show a heuristic approximation to (1)
given by an L-functional. Let {mi} be an increasing sequence of positive integer, and

f(x) =
∑∞

i=0 aim
−1/2
i sin(mix) for x ∈ [0, 2π], where

∑∞
i=0m

2s
i a

2
i < ∞ for some large

s > 0. Consider the L-functional given by

L(f, t) = inf
u∈Ḣs

{
t‖u‖2

Ḣs + ‖v‖2L2 : f = u+ v
}
, (21)

where ‖u‖2
Ḣs = ‖(−∆)s/2u‖2L2 = ‖(|ξ|sû(ξ))∨(·)‖2L2 . Expressing these norms in Fourier

domain, L(f, t) can be rewritten as

L(f, t) = inf
u∈Ḣs

{∫
R

[
t|ξ|2s|û(ξ)|2 + |f̂(ξ)− û(ξ)|2

]
dξ

}
.

Note that in this case X1 = Ḣs and X2 = L2. For each t > 0, there exists a unique
u(t) ∈ Ḣs that minimizes (21) and u(t) is given by

û(t)(ξ) =
1

1 + t|ξ|2s
· f̂(ξ) =

1

1 + (t
1
2s |ξ|)2s

· f̂(ξ).

Note that if s > 0 is large, then 1

1+(t
1
2s |ξ|)2s

can be approximated (≈) by a characteristic

function on the interval [−t−
1
2s , t−

1
2s ].

u(t) ≈



0 if m−s20 < t

a0m
−1/2
0 sin(m0x) if m−2s

1 < t ≤ m−2s
0

· · ·∑n
i=0 aim

−1/2
i sin(mix) if m−2s

n+1 < t ≤ m−2s
n

· · · · · · · · · · · · · · ·

Let cn =
∑n

i=0m
2s
i a

2
i , c∞ = limn→∞ cn, and dn =

∑∞
i=n a

2
i . Note that in this case, we

have p = 2 and γ = θ. Therefore,

Lf(t, θ) = t−θL(f, t) ≈


t−θd0 if m−s20 < t

t−θ[tc0 + d1] if m−2s
1 < t ≤ m−2s

0

· · ·
t−θ[tcn−1 + dn] if m−2s

n < t ≤ m−2s
n−1

· · · · · · · · · · · · · · ·

Let ϕn(t) = t−θ[tcn−1 + dn], then ϕn has exactly one global minima at sn = θ
1−θ

dn
cn−1

.

The sequence {sn} is decreasing. In particular,

sn =
θ

1− θ
dn
cn−1

≥ θ

1− θ
dn+1

cn−1
≥ θ

1− θ
dn+1

cn
= sn+1.

Thus, tn = m−2s
n is a local maxima of Lf(t, θ) if and only if sn+1 < m−2s

n < sn. In
other words,

θ

1− θ
dn+1

cn
≤ m−2s

n ≤ θ

1− θ
dn
cn−1

.
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Equivalently, θ ∈ Itn ⊂ (0, 1) where

Itn =

(
m−2s
n cn−1

dn +m−2s
n cn−1

,
m−2s
n cn

dn+1 +m−2s
n cn

)
.

We have

|Itn | = m−2s
n

cndn − cn−1dn+1

(dn+1 +m−2s
n cn)2

= m−2s
n

(cn−1 +m2sa2
n)(dn+1 + a2

n)− cn−1dn+1

(dn+1 +m−2s
n cn)2

= m−2s
n

m2sa2
ndn+1 + a2

ncn−1 +m2sa4
n

(dn+1 +m−2s
n cn)2

= a2
n

dn+1 +m−2s
n cn

(dn+1 +m−2s
n cn)2

=
a2
n

dn+1 +m−2s
n cn

=
m2s
n a

2
n

m2s
n dn+1 + cn

,

and
m2s
n a

2
n

c∞
≤ |Itn | =

m2s
n a

2
n

m2s
n dn+1 + cn

≤ m2s
n a

2
n

m2s
0 d0

.

Note that the lower bound m2s
n a

2
n

c∞
gives the relative size of m2s

n a
2
n with respect to c∞

which depends on both mn and an. Moreover,

1 ≤
∞∑
i=0

|Itn | ≤ (m−2s
0 )(

c∞
d0

) = (m−2s
0 )
‖f‖2

Ḣs

‖f‖2
L2

. (22)

In this example, all scales tn = m−2s
n are stable scales. Suppose an = an and mn = bn

for some a ∈ (0, 1) and b > 1 such that bsa < 1. Then

(1− b2sa2)b2sna2n ≤ |Itn | ≤ (1− a2)b2sna2n.

Example 2. Consider next the L-functional given by the Rudin-Osher-Fatemi model
[26]

L(f, t) = inf
(u,v)∈ ˙BV×L2

{
t‖u‖ ˙BV + ‖v‖2L2

}
. (23)

Let f = 1Br(0). The calculation from [27] shows that

u(t) =

{
(1− t

r )1Br if t < r
0 if t > r.

For all γ ∈ (0, 1), a simple calculation shows that t∗ = 2r 1−γ
2−γ < r is the only local

maxima for L(f, t) = t−γL(f, t). Moreover, Tf = (0, r) and none of the interpolating
scales in Tf are stable. This example shows that the L-functional (23) fails to see r as
a stable interpolating scale.

Example 3. Consider the K-functional given by [9]

K(f, t) = inf
(u,v)∈ ˙BV×L1

{
t‖u‖ ˙BV + ‖v‖L1 : f = u+ v

}
. (24)

10



Let f = 1Br(0), where Br(p) denotes the ball of radius r centered at p ∈ R2. Let

(u(t), v(t) = f − u(t)) ∈ ˙BV × L1 such that

K(f, t) = t‖u(t)‖ ˙BV + ‖v‖L1 .

Then the calculation from [9] gives

u(t) =

{
f if t < r

2
0 if t > r

2

⇒ K(f, t) =

{
2πrt if t < r

2
πr2 if t > r

2 .

For θ ∈ (0, 1), we have

Kf(t, θ) =

{
2πrt1−θ if t < r

2
πr2t−θ if t > r

2 .
⇒ ∂Kf(t, θ)

∂t
=

{
(1− θ)2πrt−θ > 0 if t < r

2
−θπr2t−θ−1 < 0 if t > r

2 .

This implies that, for all θ ∈ (0, 1), t∗ = r
2 is the only local maxima for Kf(·, θ), and

It∗ = (0, 1). In this case t∗ is the only stable scale.
Suppose next f = 1Qr(p) where Qr(p) is the square centered at p ∈ R2 with side

lengths r. Let θ∗ = 8+6π
20+3π ≈ 0.9125. A simple calculation shows that t∗ = r

2 is
the only local maxima for Kf(t, θ) for all θ ∈ It∗ = (0, θ∗), and for each θ ∈ (θ∗, 1),

t = 16r(1−θ)
3(4−π)(2−θ) is the only local maxima for Kf(t, θ). Note that t∗ = r

2 is the only
stable scale.

Example 4. In this example, we consider again the K-functional given by (24). Let {rk}
be a decreasing sequence of nonnegative real numbers such that

∑∞
k=0 rk <∞, and let

f =
∑∞

k=0 1Brk (pk). We assume that |pk − pj | � 1 if j 6= k. Let

cn = 2π

n∑
k=0

rk, c∞ = lim
n→∞

cn, and dn = π

∞∑
k=n

r2
k.

We have

Kf(t, θ) =


t−θd0 if r0

2 ≤ t <∞
t−θ [tc0 + d1] if r1

2 ≤ t <
r0
2

· · ·
t−θ [tcn−1 + dn] if rn

2 ≤ t <
rn−1

2
· · ·

(25)

Following the same arguments as in example 1, we obtain that tn = rn
2 is a local maxima

of Kf(t, θ) for all θ ∈ Itn where

Itn =

(
(rn/2)cn−1

dn + (rn/2)cn−1
,

(rn/2)cn
dn+1 + (rn/2)cn

)
We have

|Itn | =
rn
2

2π2r3
n + πr2

ncn−1 + 2πrndn+1

(dn+1 + (rn/2)cn)2
= πr2

n

dn+1 + (rn/2)cn
(dn+1 + (rn/2)cn)2

=
πr2

n

dn+1 + (rn/2)cn
≥ 2πrn

c∞
.

(26)

11



Again, the lower bound 2πrn/c∞ measures the relative size of 2πrn with respect to c∞.
Also,

|Itn | =
πr2

n

dn+1 + (rn/2)cn
=

2πrn
2dn+1/rn + cn

≤ 2πrn
(2/r0)d0

.

Moreover,

1 ≤
∞∑
n=0

|Itn | ≤ (
r0

2
)(
c∞
d0

) = (
r0

2
)
‖f‖ ˙BV

‖f‖L1

, (27)

which agrees with (22). Note that all scales tn = rn
2 are stable scales. Denote by

K ′−(f, t) and K ′+(f, t) the left and right derivative of K(f, t) at t. Then at tn = rn
2 , we

have
K ′−(f, tn) = cn > cn−1 = K ′+(f, tn).

This implies
K ′−(f, tn)−K ′+(f, tn) = cn − cn−1 = 2πrn.

We see that in this case

Itn =
tn

K(tn)
[K ′−(f, tn)−K ′+(f, tn)], (28)

where K(tn) = tncn+dn+1 = tncn−1 +dn. In this example, suppose rn = an, 0 < a < 1.
Then

(1− a)an ≤ |Itn | ≤ (1− a2)an

which shows that |Itn | decays exponentially.

Example 5. In this example, we extend example 4 by considering f =
∑∞

k=0 ak1Brk (pk),

where ak > 0 and the sequence {rk} is decreasing such that
∑∞

k=0 akrk <∞. Let

cn = 2π
n∑
k=0

akrk, c∞ = lim
n→∞

cn, and dn = π
∞∑
k=n

akr
2
k.

Follow the same calculation as in example 4, one obtains that tn = rn
2 ∈ Tf for all n

and

Itn =

(
(rn/2)cn−1

dn + (rn/2)cn−1
,

(rn/2)cn
dn+1 + (rn/2)cn

)
,

and

|Itn | =
πanr

2
n

dn+1 + (rn/2)cn
.

Remark 3. Following example 4, suppose f = χBr0 (p0) + χBr1 (p1) with r0 > r1 and
|p0 − p1| >> 1. With the notation that c−1 = 0 and d2 = 0, we have

It0 =

(
0,

r2
0

r2
0 + r2

1

)
and It1 =

(
r0r1

r0r1 + r2
1

, 1

)
.

Suppose r0 is fixed.

1. Letting r1 → 0 implies |It1 | → 0 and |It0 | → 1. This shows that the scale t0 is
more prominent than t1.

2. Letting r1 → r0 implies |It1 | → 1/2 and |It0 | → 1/2. This shows that both scales
r0 and r1 are equally prominent.

12



2.2 Properties of interpolating scales

Let the dilating operator be defined as dδf(x) = f(δx) for δ > 0. Suppose ‖ · ‖X1 and
‖ · ‖X2 are homogenous of degree s1 and s2 respectively. In other words,

‖∂δg‖X1 = δs1‖g‖X1 , and ‖dδg‖X2 = δs2‖g‖X2 . (29)

Suppose also that Sf(t, θ) = t−θK(f, t), where K(f, t) is defined in (8). Then we have

K(dδf, t) = δs2K(f, tδs1−s2),

which implies
S(dδf)(t, θ) = δθs1+(1−θ)s2Sf(tδs1−s2 , θ).

In particular,
S(dδf)(t′, θ) = δθs1+(1−θ)s2Sf(t, θ),

where t′ = tδs2−s1 . This shows that the interpolating scales satisfies the dilating consis-
tency property, and we can relate the scales of dδf with the scales of f . Moreover, the
stability of scales are invariant under dilation. In particular, suppose Sf(t, θ) is given
by a K-functional satisfying the homogeneous property (29). Then the interpolating
scales of dδf is given by

Tdδf =
{
t′ = tδs2−s1 : t ∈ Tf

}
.

Moreover,
Idδf,t′ = If,t, ∀t ∈ Tf and t′ = tδs2−s1 ∈ Tdδf .

Moreover, if s1 = s2, then t′ = t which shows that interpolating scales are invariant
under dilations.

The same result also holds if Sf is given by an L-functional.

Remark 4. Suppose we are in Rn:

• For the functional L(f, t, L2, Ḣs) given by (21) with p1 = p2 = 2, s1 = −n + 2s
and s2 = −n.

• For the functional L(f, t, L2, ˙BV ) with p1 = 1 and p2 = 2, s1 = −n + 1 and
s2 = −n.

• For the functional K(f, t, L1, ˙BV ) given by (24), s1 = −n+ 1 and s2 = −n.

• For the K-functional K(f, t, L2, ˙BV ), s1 = −n+ 1 and s2 = −n/2. If n = 2 (i.e.
in R2), then s1 = s2 = −1. This shows that the interpolating scales of f with
respect to K(f, t, L2, ˙BV ) are invariant under dilation.

Examples 1, 3 and 4 show that the set If,t for each t ∈ Tf is a subinterval in (0, 1).
The following result indeed shows that in general If,t is a subinterval in (0, 1).

Proposition 1. Let t̄ ∈ Tf (θ1)∩Tf (θ2), for some 0 < θ1 < θ2 < 1. Then t̄ ∈ Tf (θ) for
all θ ∈ (θ1, θ2). In other words, If,t̄ is a subinterval in (0, 1).

13



Proof. t̄ being a local maxima for both Sf(t, θ1) and Sf(t, θ2) implies there exists a
small ε > 0 such that Sf(t̄, θi) ≥ Sf(t, θi), for all t ∈ (t̄− ε, t̄+ ε), for i = 1, 2. We have
for all t ∈ (t̄, t̄+ ε),

Sf(t̄, θ) = t̄−θ+θ1Sf(t̄, θ1) > t−θ+θ1Sf(t, θ1) = Sf(t, θ),

since t−θ+θ1 is strictly decreasing. Similarly, for all t ∈ (t̄− ε, t̄),

Sf(t̄, θ) = t̄−θ+θ2Sf(t̄, θ2) > t−θ+θ2Sf(t, θ2) = Sf(t, θ),

since t−θ+θ2 is strictly increasing. Hence, t̄ is a local maxima of Sf(t, θ).

Suppose t̄ ∈ Tf , and K(f, ·) is differentiable at t̄. Then for some θ̄ ∈ (0, 1), we have

0 =
∂

∂t
Sf(t̄, θ̄) = −θ̄t−θ̄−1K(f, t̄) + t−θ̄K ′(f, t̄), ⇒ θ̄ = t̄

K ′(f, t̄)

K(f, t̄)
,

which is uniquely determined by t̄. In other words, if K(f, ·) is differentiable at t̄, then
If,t̄ = {θ̄}. Since for a fixed θ, Sf(·, θ) is differentiable almost everywhere, we have that
|If,t| = 0 for almost every t ∈ Tf . Thus the following result holds.

Proposition 2. For each t ∈ Tf , either If,t is an interval in (0, 1) or If,t consists of a
single point. Moreover, for almost every t ∈ Tf , |If,t| = 0.

In examples 1 and 2 we see that each θ, Sf(t, θ) is differentiable for all t. Thus,
If,t = 0 for all t > 0. From (28), we see that the length of the interval If,t is directly
related to the left and the right derivative of K at t. Denote by K ′−(f, t) and K ′+(f, t)
the left and right derivatives of K(f, t) at t respectively. Then the following result
holds.

Proposition 3. For all t ∈ Tf , we have

|If,t| =
t

K(f, t)

[
K ′−(f, t)−K ′+(f, t)

]
. (30)

Proof. By Proposition 2, we may assume K ′−(f, t) > K ′+(f, t). We have

Sf ′−(t, θ) = −θt−θ−1K(f, t) + t−θK ′−(f, t) > 0 ⇐⇒ θ <
t

K(f, t)
K ′−(f, t).

Similarly,

Sf ′+(t, θ) = −θt−θ−1K(f, t) + t−θK ′+(f, t) < 0 ⇐⇒ θ >
t

K(f, t)
K ′+(f, t).

Thus, θ ∈ If,t if and only if

t

K(f, t)
K ′+(f, t) < θ <

t

K(f, t)
K ′−(f, t),

which shows (30).
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Remark 5. The previous Proposition shows that the stability of the scale t is given by
the jump in the derivatives of K(f, t) at t weighted by t/K(f, t). Suppose t1 < t2 are
two interpolating scales such that

K ′−(f, t1)−K ′+(f, t1) = K ′−(f, t2)−K ′+(f, t2). (31)

By (18), we have
t1

K(f, t1)
≤ t2
K(f, t2)

.

This implies that the scale t2 is more stable than t1 even though (31) holds.

Recall that we have

K(f, t) = K(f, t,X2, X1) = inf
(u,v)∈X1×X2

{t‖u‖X1 + ‖v‖X2 : f = u+ v} .

Suppose f ∈ X2. Take u = 0 and v = f , then

K(f, t) ≤ ‖f‖X2 , for all t > 0.

On the other hand suppose f ∈ X1. Let u = f and v = 0, then for all t > 0,

t−1K(f, t) ≤ ‖f‖X1 .

In particular,

lim
t→∞

K(f, t) ≤ ‖f‖X2 and lim
t→0+

t−1K(f, t) ≤ ‖f‖X1 .

For example if we take X1 = L∞ and X2 = L1, then it has been shown (see [6], Chapter
5, Theorem 1.6) that ∞L∞ + L1 = L1 and L∞ +∞L1 = L∞ with the same norms. In
other words,

‖f‖∞L∞+L1 = lim
t→∞

K(f, t) = ‖f‖L1 , and ‖f‖L∞+∞L1 = lim
t→0+

t−1K(f, t) = ‖f‖L∞ .

Thus it is possible that K(f, t) is unbounded, i.e. limt→∞K(f, t) = ∞ in which
case f /∈ L1. Similarly, if f /∈ L∞, then limt→0 t

−1K(f, t) = ∞. In this case, we have
f ∈ L∞ + L1, but f /∈ L∞ and f /∈ L1.

Next, we would like to know what structure there is on the sets If,t, in particular
if there is a bound on how many of them there are of length greater than some fixed
δ > 0. The following example shows that if K(f, t) can be an arbitrary increasing
concave function then no such bound exists. We take K(f, t) to be a piecewise linear
approximation to a power function with exponent less than 1. Specifically, take A >
B > 1 and by Proposition 3, let K(f, t) be piecewise linear with vertices (tj ,Kj) for all
j ∈ Z such that

|If,tj | =
tj
Kj

(
Kj −Kj−1

tj − tj−1
− Kj+1 −Kj

tj+1 − tj

)
=
B − 1

A− 1

(
A

B
− 1

)
.

Hence it is evident that for any fixed δ > 0, we can choose A > B > 1 such that there
are infinitely many If,t of length greater than δ. In this example, K(f, t) is unbounded
and has unbounded right derivative at 0.
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Next, let us note that K(f,t)
t is decreasing in t and bounded below by K(f, 1) when

t ∈ (0, 1) and thus on this interval

t

K(f, t)
≤ K(f, 1)−1, ∀t ∈ (0, 1).

This gives

|If,t| ≤
1

K(f, 1)
(K ′−(f, t)−K ′+(f, t)). (32)

If limt→0+ K
′(f, t) is bounded (which is the case when f ∈ X1), then equation (32)

implies the summability of the lengths of the If,t over the scales t ∈ (0, 1) since the sum
is telescoping. For the scales t ≥ 1, we instead use the fact that K(f, t) is increasing
and the fact that

|If,t| ≤
t

K(f, 1)
(K ′−(f, t)−K ′+(f, t)).

However, when examining the graph of K(f, t), it is easy to see that t(K ′−(f, t) −
K ′+(f, t)) is the interval subtended on the vertical axis by the left and right tangent
lines at t. Concavity implies that these intervals are disjoint for distinct values of t,
and their union is contained in the range of K(f, t). In particular if K(f, t) is bounded
(which is the case when f ∈ X2) then the lengths of If,t over the scales t ≥ 1 are
summable. Combining this with the previous result, we see that if K(f, t) is bounded
and has bounded right derivative at 0, then the lengths of If,t are summable over all
scales. Thus we have the following Lemma.

Lemma 2. Suppose limt→∞K(f, t) <∞ and limt→0+ t
−1K(f, t) <∞. In other words,

suppose f ∈ (∞X1 +X2) ∩ (X1 +∞X2). Then∑
t∈Tf

|If,t| <∞.

A direct consequence of Lemma 2 is the following result.

Corollary 2. Suppose f ∈ X1 ∩X2. Then∑
t∈Tf

|If,t| <∞.

A stronger estimate for K(f, t) as t→∞ is as follows. Suppose X1 is continuously
embedded in X2. In other words, there exists C > 0 such that ‖u‖X2 ≤ C‖u‖X1 for all
u ∈ X1. Then for all t ≥ C, we have K(f, t) = ‖f‖X2 , assuming f ∈ X2. Indeed, let
f = u+ v be any decomposition, then

t‖u‖X1 + ‖v‖X2 ≥
t

C
‖u‖X2 + ‖v‖X2 ≥ ‖u‖X2 + ‖v‖X2 ≥ ‖f‖X2 .

Taking the infimum over all decompositions, we have K(f, t) ≥ ‖f‖X2 , but u = 0 and
v = f is one valid decomposition. This implies,

K(f, t) = ‖f‖X2 , for all t ≥ C.

Thus, we have the following result.
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Corollary 3. Suppose X1 is continuously embedded in X2, and let C be the smallest
constant such that

‖u‖X2 ≤ C‖u‖X1 , for all u ∈ X1.

Let f ∈ X2. Then for all t ≥ C, K(f, t) = ‖f‖X2. The decomposition u = 0 and v = f
minimizes

J(u, t) = t‖u‖X1 + ‖v‖X2 .

Remark 6. In Rn. Define

p∗ =

{ np
n−p if p < n

∞ if p = n

with 1∗ = ∞ if n = 1 and n
n−1 otherwise. Let Ω ⊂ Rn be a bounded with Lipschitz

boundary. Poincaré Inequalities imply that ˙BV (Ω) is continuously embedded in Lp(Ω),
for all 1 ≤ p ≤ 1∗. In other words, there exists a constant C = C(p,Ω) such that

‖u− uΩ‖Lp(Ω) ≤ C‖u‖ ˙BV (Ω), for all u ∈ ˙BV (Ω), 1 ≤ p ≤ 1∗.

Let f ∈ Lp(Ω) and consider the K-functional K(f, t) = K(f, t, ˙BV (Ω), Lp), 1 ≤ p ≤ 1∗.
Give any decomposition f = u+ v ∈ ˙BV (Ω) + Lp(Ω) we have

t‖u‖ ˙BV (Ω) + ‖v‖Lp(Ω) = t‖u− uΩ‖ ˙BV (Ω) + ‖v‖Lp(Ω) ≥
t

C
‖u‖Lp(Ω) + ‖v‖Lp(Ω)

≥ ‖u‖Lp(Ω) + ‖v‖Lp(Ω) ≥ ‖f‖Lp .

Thus for all t ≥ C, K(f, t) = ‖f‖Lp .
We have seen that if limt→∞K(f, t) = K(f,∞) < ∞ (i.e if f ∈ ∞X1 + X2), then

for any fixed t0 > 0, the lengths of the intervals If,t, t ∈ Tf and t ≥ t0, are always
summable. In particular, ∑

t∈Tt,t≥t0

|If,t| ≤ K(f,∞)−K(f, t0).

Also, if limt→0+ t
−1K(f, t) < ∞ (i.e. f ∈ X1 +∞X2) , then the summability of the

lengths of the intervals If,t, for t ∈ If and 0 < t < t0, are ensured. However, the
boundedness of limt→0+ t

−1K(f, t) is not necessary. In other words, there are cases
where limt→0+ t

−1K(f, t) =∞ and ∑
t∈Tt,t≤t0

|If,t| <∞. (33)

Indeed, suppose f ∈ X2 \X1 and X1 ⊂ X2 such that

inf
u∈X1

‖f − u‖X2 = γ > 0. (34)

For instance, X2 is a finite dimensional vector space of dimension m and X1 is any sub-
space of X2 with dimension k < m. For each t > 0, let f = u+ v be any decomposition
of f . Then we have

t‖u‖X1 + ‖v‖X2 ≥ ‖v‖X2 = ‖f − u‖X2 ≥ γ.
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Taking the infimum over all decompositions of f , we have K(f, t) ≥ γ. Using the fact
that t(K ′−(f, t)−K ′+(f, t)) is the interval subtended on the vertical axis by the left and
right tangent lines at t, we have that (33) holds. In particular,∑

t∈Tt,t≤t0

|If,t| ≤ K(f, t0)− γ. (35)

The thresholding parameter δ as an interpolating scale: Fix f and define
s : R+ → R+ by s(t) = |If,t|. For each λ ≥ 0 denote

Dλ = {t > 0 : s(t) > λ}.

From (30) and the fact that K(f, t) is concave, we have Dλ is a finite set, i.e. #Dλ <∞.
Consider µs and s∗ defined as

µs(λ) = #Dλ, for all λ > 0,

and
s∗(δ) = inf

µs(λ)≤δ
λ.

Let dδ(t) be defined as

dδ(t) =

{
s∗(δ) if s(t) > s∗(δ),
s(t) otherwise.

Equipped l1 and l∞ on R+ with the discrete measure, then dδ(t) is the minimizer for
the variational problem

K(s, δ, l1, l∞) = inf
d∈l∞

{δ‖d‖l∞ + ‖s− d‖l1} . (36)

Thus, the thresholding parameter δ can be viewed as an interpolating scale with respect
to the K-functional K(s, δ, l1, l∞). Thus, δ can also be automated.

3 Numerical results

In this section, we provide some numerical results on the interpolating scales with
respect to the following functional:

K(f, t) = inf
(u,v)∈ ˙BV×L1

{
t‖u‖ ˙BV + ‖v‖L1

}
. (37)

As seen from Example 4, K(f, t) is localized in the spacial domain. This functional
K(f, t) was proposed by Nikolova in [24] as a discrete model to remove outliners and
impulse noise. This functional was also proposed in [10] as an REU Summer project.
Chan-Esedoglu [9] further analyzed K(f, t) as a continuous model and studied the
case where f = χΩ, for some Ω ⊂ Rn. They also showed that for each t > 0, there
exists a minimizer u(t) that is also a characteristic function. Allard in [1] and [2]
provided further analysis of K(f, t) and computed exact minimizers for a certain class
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f Sf |It|/δ∗>δ,δ=0.025

Figure 1: In this figure, f is a characteristic function of a circle. Sf(t, θ) = t−θK(f, t)
with θ = 0.5. |It|/δ∗ shows the length of the intervals for the δ-relatively-stable scales with
δ = 0.025. In this case, there is only one δ-relatively-stable scale.

of characteristic functions. See also Morgan-Vixie [23], Duval-Aujol [11] and references
there in for further analysis of the functional K(f, t). Recently there are fast numerical
methods for computing functional involving the total variation [12], [8], [13]. For the
numerical results shown below, we use the algorithm from [12] for computing minimizers
in (37). The software can be downloaded through http://www.wotaoyin.com/

Based on the result from Corollary 1, the Sf function is discretize uniformly with
respect to (τ, θ), where τ = loga t with a = 1.02. More specifically, let

Dτ =
{
tk = ak : k = −50, · · · , 250, a = 1.02

}
, and

Dθ =

{
θj = j∆θ : ∆θ = 0.005, j = 1, · · · , 1

∆θ
−∆θ

}
.

Then Sf is computed discrete on Dt ×Dθ.
Figure 1 shows indeed there is only one stable scale, which agrees with example 3.
Figure 2 shows the interpolating scales for the beetle image. The plot of It/δ

∗

shows that the most stable and localized scale in this image is tk with k = 153 which
corresponds to the body of the beetle. The scale tk with k = 72, which corresponds to
beetle’s legs, is not very well localized. There seems to be a mixture of scales ranging
from k = 62 to k = 82 for the beetle’s legs. See the caption in figure 2 for further
explanations.

Figures 3-4 show the case for texture decompositions. In this case, the prominent
stable scale most occur at small tk’s.

4 Discussion

From Proposition 3, we see that t∗ is a stable scale if and only if there is a jump in the
derivative of K(f, t) at t∗. This shows that the d

∂tK(f, t) is non-smooth in t. The set
of stable interpolating scales can be used as a tool to determine the non-smoothness of
K.
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f

Sf |It|/δ∗>δ,δ=0.025 |It|/δ∗>δ,δ=0.225

u(tk),k=34 u(tk),k=62 u(tk),k=72 u(tk),k=82 u(tk),k=153

Figure 2: In this figure, f is a characteristic function of the beetle. Sf(t, θ) = t−θK(f, t) with
θ = 0.5 which shows there are two local maximas. |It|/δ∗ shows the length of the intervals for
the δ-relatively-stable scales with δ = 0.025, 0.225. In this case, we see that there are three
cluster of scales, which occur at tk’s with k = 34, 72, 153. The cluster of scales at k = 72
contains a mixture of scales ranging from k = 62 to k = 82.
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f Sf |It|/δ∗>δ,δ=0.025 |It|/δ∗>δ,δ=0.225

u(tk),k=−32 u(tk),k=−5 u(tk),k=25

v(tk),k=−32 v(tk),k=−5 v(tk),k=25

Figure 3: In this figure, Sf(t, θ) = t−θK(f, t) with θ = 0.5 which shows there are two local
maxima. |It|/δ∗ shows the length of the intervals for the δ-relatively-stable scales. In this
case, we see that there are a few clusters of scales, which occur at tk’s with k = −32,−5, 25.
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f Sf |It|/δ∗>δ,δ=0.025 |It|/δ∗>δ,δ=0.525

u(tk),k=−12 u(tk),k=0 u(tk),k=23 u(tk),k=39

v(tk),k=−12 v(tk),k=0 v(tk),k=23 v(tk),k=39

Figure 4: In this figure, Sf(t, θ) = t−θK(f, t) with θ = 0.5 which shows there is one local
maxima. |It|/δ∗ shows the length of the intervals for the δ-relatively-stable scales. The most
stable cluster of scales ranging from tk’s with k = −12 to k = 0. Another cluster of stable
scales ranging from k = 23 to k = 39.
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Next, we would like to discuss another approach for selecting the (global) scale
parameter t in (8) (or (9)), which is related to the local scale method described in [16].
For each t > 0, let u(t) ∈ X1 such that

K(f, t) = t‖u(t)‖X1 + ‖f − u(t)‖X2 .

To study local scales of f , we consider [16],

Sf(t, x) = t
∂u

∂t
(t, x).

The local scales of f at x are then defined as local maxima of |Sf(·, x)|. As for the
global scale, one can consider Sf(t) = t

∥∥∂u
∂t (t)

∥∥
X1

. The global scales are defined as

local maxima of |Sf(·)|. If we go back to example 3, then Sf(t) = −t2πrδr/2(t), which
shows that t = r/2 is the only local maxima and |Sf(r/2)| = πr2 provides a notion of
visibility (stability) of the scale t = r/2. In example 4, we have

u(t) =



0 if r0
2 ≤ t <∞,

1Br0 (p0) if r1
2 ≤ t <

r0
2 ,

· · ·∑n−1
k=0 1Brk (pk) if rn

2 ≤ t <
rn−1

2 ,

· · ·

Thus, Sf(t) = −t
∑∞

n=0 2πrnδrn/2(t), which shows that the only local maxima for |Sf |
are rn/2, and

|Sf(rn/2)| = πr2
n =

rn
2

[K ′−(f, rn/2)−K ′+(f, rn/2)].

A related discussion of global scales is proposed by Vixie-et al [30], where the authors
consider Sf(t) = ∂

∂t

[
‖u(t)‖ ˙BV

]
. In This case,

|Sf(rn/2)| = 2πrn = K ′−(f, rn/2)−K ′+(f, rn/2).

For instance, if one considers

Jtn =
2πrn
‖f‖ ˙BV

=
rn∑∞
k=0 rk

as a measure of stability for the scale tn = rn/2, then as shown in example 4, |Itn | > Jtn .
An example of a K-functional: Suppose f ∈ L1(Rn) +L∞(Rn). For each λ ≥ 0

and t ≥ 0, define
µf (λ) = |{x ∈ Rn : |f(x)| > λ}| ,

and
f∗(t) = inf

µf (λ)≤t
λ.

For each t > 0 and x ∈ Rn, define

u(t, x) = min{|f(x)|, f∗(t)} · sgn(f(x)), and
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v(t, x) = f(x)− u(t, x) = max{|f(x)| − f∗(t), 0} · sgn(f(x)).

Then one has ([6])

t‖u(t, ·)‖L∞ + ‖v(t, ·)‖L1 = K(f, t, L1, L∞).

Moreover,

K(f, t, L1, L∞) =

∫ t

0
f∗(s) ds.

The same also holds if the Lesbegue spaces L1 and L∞ are replaced by l1 and l∞,
respectively, with the discrete measure.
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