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We consider a domainΩ ⊂ Rn and the Sobolev spacesWk,p of functions withk deriva-

tives in Lp. It is well known that extension operators fromWk,p(Ω) to Wk,p(Rn) exist only

under some assumptions on the geometry ofΩ. In the case thatΩ has Lipschitz boundary,

Caldeŕon showed that for each integerk there is an extension operator valid onWk,p(Ω)

for 1 < p < ∞. Later work of Stein introduced a degree-independent operator for a Lip-

schitz domain, so that a single operator could be used onWk,p(Ω) for all integerk and

all 1 ≤ p ≤ ∞. Subsequently Jones introduced an extension operator on locally uni-

form domains. This is a much larger class of domains that includes examples with highly

non-rectifiable boundaries. Jones also proved that these are the sharp class of domains

for extension of Sobolev spaces inR2. The operators constructed by Jones are degree-

dependent: the extension operator forWk,p(Ω) is not defined on spaces with lower degrees

of smoothness. In the present work we extend the methods used by Stein and Jones and

thereby produce a degree-independent operator that may be used on all spacesWk,p(Ω) on

a locally uniform domainΩ.
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Chapter 1

Preliminaries

1.1 Definitions and Notation

Balls, Cubes and the Dyadic Grid

We work on then-dimensional Euclidean spaceRn and on an open connected domain

Ω ⊂ Rn. Points are denotedx or (x1, x2, . . . , xn). The Euclidean distance between two points

is |x−y|, the distance fromx to a setA is dist(x,A) = inf y∈A |x−y|, and the distance between

two sets is dist(A, B) = inf |x− y| : x ∈ A, y ∈ B. Balls are writtenB(x, r) = {y : |x− y| ≤ r}.
At times it will be convenient to writeλB for the ball concentric withB but havingλ times

its radius.

A set of the formQl(x) = {y : |yj − xj | ≤ l/2} is called a cube of centerx and size

or sidelengthl. Usually the center of the cubeQ is denotedxQ and its size isl(Q). As

with balls,λQ is the cube with the same center asQ but sizeλ times as large. A dyadic

cube of scale 2j, j ∈ Z, is a cube having size 2j and all of whose vertices lie on the lattice

(2jZ)n. Clearly each dyadic cube of scale 2j can be divided into 2n dyadic cubes of scale

2j−1 (called its dyadic children) and is itself contained in a unique cube of scale 2j+1 (its

4



CHAPTER 1. PRELIMINARIES 5

dyadic parent). The useful covering properties of the dyadic grid of cubes arise as a result

of the following observation: ifQ j , Qk are dyadic cubes of any scale then either they

have disjoint interiors or the smaller is contained in the larger. Given a collection of dyadic

cubes we can then obtain a cover of their union in which all boxes have pairwise disjoint

interiors by merely removing from the collection any box which is contained in some larger

box. The remaining boxes are those which were maximal under inclusion, and by the above

observation they have disjoint interiors.

The Whitney Decomposition

It is a result of Whitney that any open setΩ ⊂ Rn may be decomposed into a collection of

dyadic cubesQ j such thatl(Q j) is comparable to the distance ofQ j from ∂Ω. The proof

we use is from Stein [Ste70] Chapter VI, Section 1.

Lemma 1.1.1. If Ω ⊂ Rn is open then there is a countable collection{Q j} of dyadic cubes

with disjoint interiors such that

1 ≤ dist(Q j , ∂Ω)√
nl(Q j)

≤ 4 (1.1)

and if Q j
⋂

Qk , ∅
1
4
≤ l(Q j)

l(Qk)
≤ 4. (1.2)

The collectionW = {Q j} is called the Whitney decomposition ofΩ.

Proof. Consider for eachj ∈ Z the collectionV of dyadic cubes of length 2j that have

non-empty intersection with the setΩ j = {x : 2 j+1√n < dist(x, ∂Ω) ≤ 2j+2√n}. It is clear

thatΩ = ∪Ω j and that everyx ∈ Ω j is contained in a dyadic box of length 2j, whereupon
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the cubes inV coverΩ. Moreover we have

dist(Q, ∂Ω) ≤ dist(x, ∂Ω) ≤ 2j+2√n = 4l(Q)

dist(Q, ∂Ω) ≥ 2j+1√n− diam(Q) = 2j+1√n− 2j √n = 2j √n = l(Q)
√

n

so that we have verified condition (1.1). It also follows that these cubes do not intersect

Ωc. In order to obtain cubes with disjoint interiors and condition (1.2) we takeW to be

the subcollection of cubes ofV which are maximal under inclusion. These cubes coverΩ

and have disjoint interiors. We now know thatQ1,Q2 ∈ W can only intersect if they have

a common boundary point, in which case we can apply (1.1) to obtain

dist(Q2, ∂Ω) ≤ dist(Q1, ∂Ω) +
√

nl(Q1) ≤ 5l(Q1)

but sincel(Q2) = 2j l(Q1) for somej we deducej = 2 and thereby establish (1.2). �

Observe also that a Whitney cube containing a point of known distance to∂Ω cannot

be too small. In particular ifx ∈ Q andQ is a Whitney cube then by (1.1)

4
√

nl(Q) ≥ dist(Q, ∂Ω) ≥ dist(x, ∂Ω) − √nl(Q)

and therefore we have

Lemma 1.1.2. If Q is the Whitney cube ofΩ containingx then

l(Q) ≥ dist(x, ∂Ω)

5
√

n
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Lebesgue and Sobolev Spaces

We useLp(Ω,dx) to denote the Lebesgue spaces of (equivalence classes of) functions onΩ

with

‖ f ‖Lp(Ω,dx) =

(∫

Ω

| f |p dx

)1/p

< ∞, if 0 < p < ∞

‖ f ‖L∞(Ω,dx) = esssupΩ | f | < ∞, if p = ∞

wheredx is Lebesgue measure. If no domain is mentioned it is assumed to be all ofRn.

Given a multi-indexα = (α1, . . . , αn) ∈ Nn of length |α| = ∑
j α j we write Dα for the

derivative (∂/∂x1)α1 . . . (∂/∂xn)αn. A locally integrable functionf on Ω is said to have a

weakα-derivative if there is another locally integrable function which we denoteDα f and

which satisfies the identity

∫

Ω

(Dα f )φ = (−1)|α|
∫

Ω

f (Dαφ)

for all C∞(Ω) functionsφ which have compact support inΩ. The function f is k times

weakly differentiable (fork ∈ N) if it has weak derivativesDα f for all |α| ≤ k. The

weak gradient is the vector∇ = (∂/∂x1, . . . , ∂/∂xn) and∇k is the vector of all weak partial

derivativesDα of order|α| = k.

A function f which isk times weakly differentiable onΩ is an element of the Sobolev

spaceWk,p(Ω) if it has finite Sobolev norm:

‖ f ‖Wk,p(Ω) =
∑

|α|≤k

‖Dα f ‖Lp(Ω) < ∞.

For ease of notation we may at times wish to refer to the valuef (x) of somef ∈Wk,p(Ω)

at a pointx ∈ Ω. This is not an a-priori well defined quantity, so we make the usual
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convention that at the Lebesgue points off

f (x) = lim
r→0

?

B(x,r)
f

where
>

f denotes the average off . At the points which are not Lebesgue we setf (x) = 0.

Lipschitz Domains

A Special Lipschitz Domain ([Ste70] Chapter VI, Section 3.2) is a set of points lying above

a Lipschitz graph. More precisely, letA(x) be a real-valued function onRn−1 which is

Lipschitz, i.e.

‖A‖Lip = sup
|A(x) − A(y)|
|x− y| < ∞

and define a domainΩA = {(x, xn) ∈ Rn : xn > A(x), x ∈ Rn−1}. Any set which may be

rotated to coincide with a domain of the formΩA is called a Special Lipschitz Domain.

A Lipschitz domain is a domain whose boundary consists of a union of Lipschitz pieces,

no one of which has too small a diameter. One way to define such a domainΩ (depending

on parametersδ > 0, J ∈ Z and a Lipschitz boundM > 0) is to require that there be a

countable collection of balls{B(xj , δ)} which have the following properties:

1. No point ofRn is contained in more thanJ distinct balls from the collection.

2. The balls cover a (δ/2)-neighborhood of∂Ω, so that anyx with dist(x, ∂Ω) < δ/2 is

in ∪ jBj.

3. For eachj there is a Lipschitz mapAj such that the setΩ∩ Bj may be translated and

rotated to coincide withΩA j ∩ B(0, δ).

This definition is from [Ste70] Chapter VI, Section 3.3, where these are calledminimally

smoothdomains. A large number of different domains are considered in the literature under
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various different names. For example, Adams calls the above condition theStrong Local

Lipschitz Condition(see [AF03], page 83). Both Adams ([AF03]) and Maz′ya ([MP97])

extensively discuss conditions of this type, as well as conditions involving cones (described

below) at boundary points. In the interests of brevity we will ignore all of these distinctions,

even when doing so slightly weakens the statements of known theorems. We do mention

that many results which are true of Sobolev spaces on special Lipschitz domains may be

transferred to Lipschitz domains via an appropriate smooth partition of unity. A proof that

this is the case for the types of problems considered in this thesis may be found in [Ste70]

Chapter VI Section 3.3, but we shall not repeat it here.

From our perspective, one of the most useful features of Lipschitz domains is the ex-

istence of cones at boundary points. We call any set which may be rotated to coincide

with

Γ(α, δ) = {(x, xn) : |x| ≤ |xn| tanα, 0 ≤ xn ≤ δ, x ∈ Rn−1} (1.3)

a cone of lengthδ, angleα and vertex at the origin. We letΓ− = {(x,−xn) : (x, xn) ∈ Γ} and

define a double cone to be any set obtained by rotation ofΓ̃ = Γ ∪ Γ−. Given a Lipschitz

domain it is not difficult to define a collection{Γ̃ j} of rotations of a fixed double cone with

vertex at the origin, length and angle depending onδ andM, and such that at every point

x ∈ ∂Ω we have a double conẽΓ j = Γ ∪ Γ− with

{x + y : y ∈ Γ j \ 0} ⊂ Ω

{x + y : y ∈ Γ−j \ 0} ⊂ Ωc.

Locally Uniform Domains

Locally uniform domains were introduced by Martio and Sarvas [MS79] and have been

extensively studied. In [Jon80] Jones identified these domains as the extension domains
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Figure 1.1: The Koch snowflake is locally uniform

for BMO functions, and in [Jon81] he addressed the question of extension of Sobolev

functions on these domains (see also Theorem 1.3.3). Jerison and Kenig [JK82] studied

potential theory on locally uniform domains; their work and that of later authors showed

that these are essentially the largest class of domains on which there is a theory of potentials

analogous to that for the upper half space.

Several different definitions of locally uniform domains occur in the literature. We use

the one found in [Jon81].

Definition 1.1.3. A domain is(ε, δ)-locally uniform if between any pair of pointsx,y such

that |x − y| < δ there is a rectifiable arcγ ⊂ Ω of length at most|x − y|/ε and having the

property that for allz ∈ γ
dist(z, ∂Ω) ≥ ε|z− x||z− y|

|x− y| . (1.4)

It is easy to see that a Lipschitz domain is locally uniform for some values ofε andδ.
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An example of a locally uniform domain which is not Lipschitz is the interior of the Koch

snowflake (Figure 1.1). The boundary of this set is not only non-rectifiable but indeed

not of Hausdorff dimension 1. In general it is possible to define for anyλ ∈ [n − 1,n) a

locally uniform domain inRn with boundary dimensionλ, however it is not possible that

the boundary have positive measure inRn.

Lemma 1.1.4.If Ω ⊂ Rn is (ε, δ) locally uniform then then-dimensional Lebesgue measure

of the boundary is|∂Ω| = 0.

Proof. Fix y ∈ ∂Ω. We show it cannot be a Lebesgue density point of∂Ω. For r > 0

considerB(y, r). If r < δ is sufficiently small then there isx1 ∈ Ω ∩ ∂B(x, r) and x2 ∈
Ω∩B

(
x, r/4

)
. By the definition of local uniformity there is an arc joining them and therefore

a pointz ∈ Ω ∩ ∂B
(
x, r/2

)
. We have

|x1 − z||x2 − z|
|x1 − x2| ≥ r

8

and so dist(z, ∂Ω) ≥ εr/8 by (1.4). Applying Lemma 1.1.2 implies the Whitney cubeQ 3 z

hasl(Q) ≥ εr

40
√

n
, and hence that the proportion ofB(y, r) that is contained inΩ is bounded

below. It follows thaty cannot be a density point of∂Ω and therefore|∂Ω| = 0. �

1.2 An Extension Problem

If Ω ⊂ Rn is a domain andf ∈Wk,p(Rn) then it is obvious that the restriction off to Ω is in

Wk,p(Ω). A natural question to ask is when the converse is the case. The following example

shows that this may depend on the geometry of∂Ω, and in particular that an outward cusp

may restrict the spaces that can be extended.

Example 1.2.1.Not all functions fromW1,2+ε(Ω) may be extended toW1,2+ε(R2) if Ω is the
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set

Ω =
{
(x, y) ∈ R2 : 0 ≤ y ≤ x1+3ε , 0 ≤ x ≤ 1

}

This domain is illustrated in Figure 3.4.2.

To see that this is the case first notice that any function fromW1,2+ε(R2) is continuous

by the Sobolev embedding theorem. However the functionf (x, y) = x−ε/(2+ε) has

∫

Ω

| f (z)|2+ε =

∫ 1

0
x−εx1+3ε dx =

1
2 + 2ε∫

Ω

|∇ f (z)|2+ε =

(
ε

2 + ε

)2+ε
∫ 1

0
x−2−2εx1+3ε dx =

(
ε

2 + ε

)2+ε 1
ε

and it follows that f is in W1,2+ε(Ω). Clearly f has no continuous extension toR2 and

therefore no extension inW1,2+ε(R2).

Ω

0 1

1

Figure 1.2: A domain for which extension is not possible

For finitely connectedΩ ⊂ R2 it is shown in [Jon81] that the presence of cusps on the

boundary ofΩ is exactly what obstructs extension of Sobolev functions. The precise result

is given below as part of Theorem 1.3.4, while the nature of the obstruction caused by a

cusp is further explored at the beginning of Chapter 3.
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For the remainder of this thesis we shall be interested in conditions on the domainΩ

that guarantee all (or most) of the spacesWk,p(Ω) arise precisely as restrictions ofWk,p(Rn),

and on the construction of operators of the form

E : Wk,p(Ω) −→Wk,p(Rn)

with estimates

‖E f ‖Wk,p(Rn) ≤ C‖ f ‖Wk,p(Ω)

1.3 Historical Remarks

Early Results

The problem of how to extend Sobolev functions was recognized early in the development

of the theory, but it is fair to say that the particular variant we are interested in was not the

focus of attention. Instead many people were interested in determining the trace space of

the Sobolev space to the boundary of a domain and the circumstances under which func-

tions from the trace space might be extended. In this direction we mention in particular

the works of Sobolev ([Sob50, Sob63]) and of Deny and Lions ([DL54]), which addressed

the important special case of the trace ofW1,2 functions. The first result for more general

Sobolev functions is in a paper of Gagliardo ([Gag57]), who identified the trace of the

spacesW1,p for all 1 ≤ p ≤ ∞. All of these results were for domains with Lipschitz bound-

ary. We also mention the works of Slobodeckiı̆ ([Slo58]), Aronszajn and Smith ([AS61]),

Lizorkin ([Liz62]), and Stein ([Ste62]), all of which appeared more or less contemporane-

ously with the results of Calderón discussed below.
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Calderón, Stein, and Jones

The first extension theorem that considered all spacesWk,p is due to Caldeŕon [Cal61] and

was an outgrowth of his work on Bessel potentials. He considered a class of domains that

is slightly more general than the Lipschitz domains defined earlier, and used a defintion

written in terms of cones rather than Lipschitz graphs. We will not give a precise definition

of these domains, but state the following theorem as a consequence of his result.

Theorem 1.3.1 (Caldeŕon, ). Let Ω ⊂ Rn be a Lipschitz domain. For each fixedk ∈ N
there is a bounded linear extension operator such that for all1 < p < ∞

Ek
C : Wk,p(Ω) −→Wk,p(Rn) (1.5)

with bound depending onn, p, k, and the constants of the Lipschitz domain. This extension

has the further property that it extends anyf ∈Wk,p
0 (Ω) to be zero outsideΩ.

The operatorEk
C is given by an explicit formula involving integration off against a

singular kernel supported on a cone (as defined in (1.3)). The constraint 1< p < ∞ is due

to the use of the Calderón-Zygmund theory of singular integrals in the proof. It is worth

remarking that since the operator extends functions fromWk,p
0 (Ω) to be zero outsideΩ we

might expect that it may be interpreted in terms of an extension from a function space

defined on∂Ω. This is indeed the case and is a particular strength of this theorem as it

actually identifies the trace ofWk,p(Ω) to ∂Ω.

Observe that Theorem 1.3.1 really proves the existence of an infinite collection of op-

eratorsEk
C, one for eachk ∈ N. In [Ste67] (see also [Ste70], Chapter VI) Stein provided

an alternative approach that produced a single operator capable of extending all Sobolev

spaces simultaneously.
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Theorem 1.3.2 (Stein).Let Ω ⊂ Rn be a Lipschitz domain. There is a bounded linear

extension operatorES such that for anyk ∈ N and1 ≤ p ≤ ∞

ES : Wk,p(Ω) −→Wk,p(Rn). (1.6)

with bound depending onn, k, p and the constants of the Lipschitz domain.

The techniques used by Stein were quite different to those of Calderón, though they

were also restricted to the case of Lipschitz domains. We note in particular that the operator

no longer extends functions fromWk,p
0 (Ω) to be zero outsideΩ. Various features of Stein’s

method will be discussed in Section 2.3.

In [Jon81], Jones proved that Sobolev functions can be extended on locally uniform

domains.

Theorem 1.3.3 (Jones).Let Ω ⊂ Rn be an(ε, δ) locally uniform domain. For each fixed

k ∈ N there is a bounded linear extension operator such that for all1 ≤ p ≤ ∞

Ek
J : Wk,p(Ω) −→Wk,p(Rn) (1.7)

with a bound depending onn, ε, δ, k and p.

This marked a dramatic expansion in the class of domains for which extension operators

could be constructed. (We recall, for example, that a locally uniform domain may have

boundary of dimension any number in [n− 1,n), while Lipschitz domains are bounded by

locally rectifiable curves.) Moreover it provided a precise characterization of the bounded

and finitely-connected extension domains inR2.

Theorem 1.3.4 (Jones).If Ω ⊂ R2 is bounded and finitely connected then the following

are equivalent
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(i) There are extension operatorsEk
J as in Theorem 1.3.3.

(ii) Ω is an(ε,∞) locally uniform domain.

(iii) ∂Ω consists of a finite number of points and quasicircles.

Theorem 1.3.3 produces an infinite collection of extension operatorsEk
J , one for each

k ∈ N. These operators are not defined on spaces with lower degrees of smoothness, nor do

they operators extend functions fromWk,p
0 (Ω) to be zero outsideΩ.

Other Results

The reader will no doubt have noticed several natural questions which were not addressed

in the works we have cited thus far. For example one might ask whether there are operators

extending functions fromWk,p
0 (Ω) to be zero outsideΩ for a locally uniform domainΩ,

whether there are analogues of the above operators for more general function spaces than

the Sobolev spaces, or to what extent Theorem 1.3.4 has analogues in higher dimensions.

These questions have been studied by a number of authors; among others we mention

the results ofŠvarcman, Gol′dstein, Christ, Jonsson and Wallin, DeVore and Sharpley,

Rychkov, and Koskela ([Šva78, Gn79, Chr84, JW84, DS93, Ryc99, Kos98]) which answer

many of these questions. It should also be noted that Theorem 1.3.4 was preceded by a ver-

sion of the same theorem for the spaceW1,2, due to Gol′dstein and Vodop′anov ([GV81]),

and that the question in higher dimensions has been partially addressed by Herron and

Koskela ([HK92, HK91]). Recent years have seen an explosion of interest in Sobolev

spaces on general metric spaces. Some extension results in this context are due to Hajłasz

and Martio, Nhieu, and Harjulehto ([HM97, Nhi01, Har02]).

As none of these results are really in the direction followed in this thesis we give no

further discussion of the techniques involved or the precise results obtained. Instead we
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identify one other problem that arises when comparing the theorems of Calderón, Stein

and Jones.

Problem 1.3.5.Given a locally uniform domainΩ, is there a single bounded linear exten-

sion operatorE such that for allk ∈ N and1 ≤ p ≤ ∞

E : Wk,p(Ω) −→Wk,p(Rn)

with a bound depending onn, ε, δ, k and p?

The purpose of the present work is to offer a solution to this problem.



Chapter 2

Constructing Extension Operators

2.1 The Main Theorem

The purpose of this thesis is to establish the following extension theorem for Sobolev

spaces:

Theorem 2.1.1.Let Ω ⊂ Rn be an(ε, δ) locally uniform domain. There exists a linear

operator f 7→ E f such that for anyk ∈ N and1 ≤ p ≤ ∞

E : Wk,p(Ω) −→Wk,p(Rn) (2.1)

‖E f ‖Wk,p(Rn) ≤ c(n, ε, δ, k, p)‖ f ‖Wk,p(Ω). (2.2)

In this chapter we shall give the framework within which this theorem will be proved.

We proceed by a method which dates back to the seminal work of Whitney [Whi34] on ex-

tensions of Lipschitz functions. Later refinements are due to Hestenes [Hes41] and Seeley

[See64]. It was applied to the study of Sobolev extension operators in a manner parallel

to its use here in the work of Jones [Jon80]. The method involves defining operators on a

collection of Whitney cubes from the interior ofΩc = Rn \ Ω and summing via a smooth

18
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partition of unity supported on the cubes, thereby reducing the extension problem for a do-

main to finding extensions for individual cubes that satisfy a compatibility condition from

cube to cube. The relevant conditions are expressed as certain estimates for the operators

corresponding to the original cubes.

The general framework just described gives a context within which it is easy to iden-

tify the essential differences between the earlier extension theorems of Calderón ([Cal61]),

Stein ([Ste67], but see also [Ste70] Chapter VI, Section 3), and Jones ([Jon81]), and to pro-

vide intuition for the properties of each. We shall take some time to describe these earlier

works in this manner, both because this presentation is not recorded in the literature and

because it will illuminate the manner in which Theorem 2.1.1 was obtained. In particular it

will be clear that our operators on Whitney cubes are related to those of Stein and that our

method of proof is based on some combination of the work of Stein with that of Jones.

2.2 The Method of Whitney

The method used by Whitney to prove his celebrated extension theorem for Lipschitz func-

tions (see [Whi34]) is the basis of the following approach to the construction of extensions

of functions defined on the domainΩ.

LetW denote the Whitney cubes of
(
Ωc)o. We begin by taking aC∞ partition of unity

{ΦQ} corresponding toW. The construction of suchΦQ is standard, and we refer to [Ste70]

Chapter VI, Section 1.3 for a proof of the following lemma.

Lemma 2.2.1.There is a collection of functions{ΦQ} having the properties

• 0 ≤ ΦQ ≤ 1

• The support ofΦQ lies in (17/16)Q.

• ∑
j ΦQ ≡ 1 on

(
Ωc)o.
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• For all multi-indicesα, everyΦQ satisfies the estimates

|DαΦQ| ≤ c(|α|)l(Q)−|α| (2.3)

Suppose we have corresponding to each cubeQ ∈ W an operatorEQ on locally inte-

grable functionsf and giving a functionEQ f (x) defined for allx ∈ (17/16)Q. We may then

form an operatorE by the locally finite sum

E f =
∑

Q∈W
ΦQEQ f (2.4)

= EQ′ f +
∑

Q∈W
(EQ f − EQ′ f )ΦQ (2.5)

where we use (2.5) to emphasize the behavior on a specific cubeQ′. If each of theEQ f has

weak derivatives of the appropriate orders we may then differentiate to obtain

DαE f = DαEQ′ f +
∑

Q∈W

∑

0≤β≤α
Dβ(EQ f − EQ′ f ) Dα−βΦQ

and together with (2.3) we obtain a bound valid onQ′

|DαE f | ≤ |DαEQ′ f | +
∑

{Q:Q∩Q′,∅}

∑

0≤β≤α
c(|α − β|)l(Q′)−|α−β||Dβ(EQ f − EQ′ f )| (2.6)

though it is more useful for most of our purposes to have the equivalentLp bound. For

convenience we label the neighbors ofQ′ by settingN(Q′) = {Q : Q∩ Q′ , ∅}.

‖DαE f ‖Lp(Q′) ≤ ‖DαEQ′ f ‖Lp(Q′)

+
∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)l(Q′)−|α−β|‖Dβ(EQ f − EQ′ f )‖Lp(Q′∩(17/16)Q)
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The number of terms on the right of this expression is bounded by a constant depending on

n andk. It follows (from Hölder’s inequality, for example) that thep-th power of the sum

is at most a constant multiple of the sum of thep-th powers, and therefore

‖DαE f ‖pLp(Q′)

≤ C(n, k, p) ‖DαEQ′ f ‖pLp(Q′)

+ C(n, k, p)
∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)pl(Q′)−|α−β|p‖Dβ(EQ f − EQ′ f )‖pLp(Q′∩(17/16)Q)

Since

‖DαE f ‖p
Lp
((

Ωc
)o) =

∑

Q′∈W
‖DαE f ‖pLp(Q′)

we conclude that in order to proveE f ∈Wk,p(
(
Ωc)o) it is sufficient to consider the quantities

∑

Q′∈W
‖DαEQ′ f ‖pLp(Q′) (2.7)

∑

Q′∈W

∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)pl(Q′)−|α−β|p‖Dβ(EQ f − EQ′ f )‖pLp(Q′∩(17/16)Q) (2.8)

where it is clear that (2.7) reflects the behavior of the individual extensionsEQ′, whereas

(2.8) is a condition on the compatibility ofEQ′ with its neighboring operatorsEQ.

At this point we have only a framework for constructing a function and estimating its

derivatives. Obviously forE f (x) to be an extension off there will be more work to be

done, however this is not so onerous as might be supposed. In the proof of Theorem 2.1.1

the domainΩ is locally uniform, so by Lemma 1.1.4 the boundary has measure zero and

no special definition ofE f needs to be made there. It will be necessary to verify thatE f

“matches up” correctly withf at the boundary (essentially that their (k − 1)-th derivatives

are Lipschitz there - see Section 5.4), but this will be a small matter by comparison with

giving an appropriate definition of the operatorsEQ so that (2.7) and (2.8) are valid. In
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practice most of the new work in this thesis relates to question of how best to define the

operatorsEQ. We begin this task by studying some prior work on extension operators.

2.3 The Operators of Caldeŕon, Stein, and Jones

The Operator of Calderón

In the remarks following Theorem 1.3.1 it was mentioned that Calderón defines his ex-

tension operator via integration against a singular kernel supported on a cone. We do not

wish to pursue the original definition here, but instead note in the case the function to be

extended is assumed to be smooth onΩ there is an equivalent definition in terms of the

values of f and its derivatives on∂Ω. The equivalence is established using integration by

parts and is outlined both in [Cal61] and [Ste70] Chapter VI, Section 4.8. There are several

advantages to using this second definition, but for our purposes the main benefit is that

we recognize a slight modification of Calderón’s construction that easily fits the form of

the Whitney method outlined above. We will not prove the following proposition as it is

included here primarily for illustrative purposes.

Proposition 2.3.1.Fix an integerk. Let Ω be a Lipschitz domain andW1 be all Whitney

cubes of
(
Ωc)o having size less than a constant depending on the Lipschitz constant of

Ω. For eachz ∈ ∂Ω let Pz(x) be the degree(k − 1) Taylor polynomial off at z. If for

eachQ ∈ W1 we defineEQ f (x) to be the average with respect to arc-length of the Taylor

polynomials in10Q∩ ∂Ω

EQ f (x) =

?

10Q∩∂Ω

Pz(x) dl(z)

and we otherwise defineE f = 0, thenE f (x) defined by(2.4) is an extension equivalent to

that of Calderón onWk,p(Ω) ∩ C∞(Ω). These functions are dense inWk,p(Ω) and conse-

quently the operator extends to the whole space by continuity.
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In this formulation the dependence of Calderón’s operator on the degreek of the Sobolev

space is particularly explicit. It is also apparent that functions fromWk,p
0 (Ω) will be ex-

tended by the zero function. One might expect that a slight modification of this definition

could be used to extend germs of functions on any closed setS supporting a suitable locally

finite measuredµ via

EQ f (x) =

?

10Q∩S
Pz(x) dµ(z)

and that with an appropriately defined function space onS this would be an extension

operator. This is indeed the case under quite general circumstances. For results of this

kind on Sobolev, Lipschitz, Besov, and other spaces the reader should consult the works of

Jonsson and Wallin, summarized in their monograph [JW84]. We mention in passing that

for a locally uniform domain it suffices for eachQ to let dµQ be the Frostman measure on

10Q∩ ∂Ω.

The Operator of Jones

In [Jon80] Jones introduced a type of reflection (akin to quasiconformal reflection) that is

possible on any (ε, δ) locally uniform domain. IfW1 denotes the collection of Whitney

cubes ofΩ having size less than a constant depending onε andδ, then it is possible to

assign to everyQ ∈ W1 a Whitney cubeQ∗ from the Whitney decomposition ofΩ which

we call the reflection ofQ. The cubeQ∗ satisfies

1 ≤ l(Q∗)
l(Q)

≤ 4 dist(Q,Q∗) ≤ Cl(Q)

The reflection is not unique, however the number of cubesQ∗ that could occur as reflections

of a givenQ is bounded by constants depending onε andδ. The number of cubesQ that

can share a given reflectedQ∗ is similarly bounded.
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Let k be fixed and considerf ∈ Wk,p(Ω). The intuition underpinning Jones’ extension

operator is that the behavior of the extensionEQ f on the Whitney cubeQ ∈ W should

record information about the derivatives of order up tok− 1 on a reflected cubeQ∗. To this

end he takes the unique polynomialP(Q∗) of degreek − 1 which best fitsf on Q∗ in the

sense that for all|α| ≤ k− 1 ∫

Q∗
Dα( f − P(Q∗)) = 0. (2.9)

and definesEQ f (x) = P(Q∗)(x) andE f (x) according to (2.4).

In Section 5.3 of Chapter 5 we will see estimates akin to those used by Jones to prove

that this defines an extension operator. The main technical difficulty is in obtaining esti-

mates like (2.8), where the local connectivity property (1.4) of a locally uniform domain

plays a crucial r̂ole. We note that Jones’ operator depends explicitly on the existence of a

polynomial satisfying (2.9) and consequently is not defined on the spacesWl,p(Ω) for l < k.

The Operator of Stein

In common with the methods used by Calderón and Jones, Stein’s operator is defined in

a way that respects polynomial approximations of the functionf . It differs in that this is

achieved using a kernel that reproduces polynomials of all degrees, so is not limited to a

fixed degreek of Sobolev spaceWk,p.

Stein introduces a smooth functionψ(t) on [1,∞) ⊂ R with the moments

∫ ∞

1
t jψ(t) dt =



1 if j = 0

0 if k ∈ N \ {0}
(2.10)

and having a certain slow exponential decay. We will give the proof that such a function ex-

ists in Chapter 4, Section 4.1. It is clear that convolution withψ(t) reproduces polynomials
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in the real variablet.

Here we will modify the definition used by Stein and give instead a presentation that is

better adapted to explanation within the context of the Whitney extension method. Stein’s

original approach may be found in [Ste70] Chapter VI, Section 3.

Let Ω be a Special Lipschitz domain andΓ̃ be a cone with vertex at the origin and of

angle such that the translates ofΓ̃ to points ofΩ are contained entirely inΩ. Then define

Γ = Γ̃ \ B(0,1). We denote points ofRn as (r, ξ) wherer ∈ [0,∞) andξ ∈ Sn−1, and take

φ(ξ) ∈ C∞(Sn−1) a function with
∫

Sn−1 φ(ξ) = 1 and such thatk(r, ξ) = ψ(r)φ(ξ) is supported

in Γ. We note that for all polynomialsP(x) onRn

∫

Rn
P(x + y)k(y) dy = P(x) (2.11)

LetW be the Whitney cubes of
(
Ωc)o. To eachQ ∈ W associate the conexQ + Γ̃

wherexQ is the center ofQ. We note that there is a constantA (depending on the Lipschitz

constant ofΩ) such that the part of this cone that lies more than distanceAl(Q) from xQ is

contained inΩ. Call this setΓQ. By narrowingΓ and slightly increasingA we may further

assume that all points within (17/16)l(Q) of points inΓQ are inΩ. (See Figure 2.3)

Now define the operator corresponding toQ by

EQ f (x) =

∫

Γ

f
(
x + Al(Q)y

)
k(y) dy (2.12)

Note that our choice ofΓ andA ensure that
(
x + Al(Q)y

) ∈ Ω wheneverx ∈ (17/16)Q and

y ∈ Sppt(k).

We state without proof the following proposition, which serves primarily as motivation

for our later definition of the extension operator sought in Theorem 2.1.1.

Proposition 2.3.2.If EQ f (x) is as defined in(2.12)then the operatorE f defined by(2.4) is
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Ω

ΓQ

Q

Figure 2.1: The coneΓQ corresponding to a cubeQ.

equivalent to the extension operator constructed by Stein and referred to in Theorem 1.3.2.

The proof we give in Sections 5.3 and 5.4 of this thesis encompasses a proof that the

operator just defined is in fact an extension operator on all spacesWk,p(Ω). The crucial

idea is the polynomial reproducing property (2.11), which will allow us to replacef by a

polynomial fitted tof on part of the coneΓQ, in a manner similar to that seen in (2.9) of

Jones’ proof. The error incurred in replacingf by the polynomial will be controlled by the

integral of|∇k f | against|k(y)| on ΓQ, so it is essential to know an estimate of the decay of

the kernelk(y). It is for this reason that we noted earlier that the functionψ(t) has slow

exponential decay. A more precise statement will be forthcoming in Chapter 3.
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2.4 The Extension Operator for the Main Theorem

Our proof of Theorem 2.1.1 will be closely related to the modified version of Stein’s con-

struction that was described in Section 2.3, and in particular our definition of the operator

corresponding to a cubeQ will be similar to (2.12). Here we give an overview of the

construction and indicate what is to come in later chapters.

Let Ω be an (ε, δ) locally uniform domain andW be the Whitney decomposition of
(
Ωc)o. It should be clear from the discussion in Section 2.3 that a typical method for ex-

tending a Sobolev functionf ∈ Wk,p(Ω) to a small cubeQ ∈ W is to use information

about polynomial approximations tof on a nearby piece ofΩ. The reason the operators

of Caldeŕon and Jones depend on the smoothnessk of the Sobolev space is that they are

defined in terms of polynomials of fixed degree. By contrast Stein’s operator makes use

of a kernel that reproduces polynomials without a priori knowledge of their degree and is

therefore independent of the indexk. With this in mind we will define the operator for

Theorem 2.1.1 using a polynomial reproducing kernel.

In the case of a Lipschitz domain it is not difficult to produce a polynomial reproduc-

ing kernel, essentially because the existence of a cone whose translates lie inΩ reduces

the problem to a one dimensional question about a function with vanishing non-constant

moments, as in (2.10). We will see in Chapter 4, Section 4.1 that functions of this type

have been well understood for some time. For our locally uniform domainΩ the problem

is substantially more difficult; most of the technical difficulties that arise in this thesis are

related to this question.

The first step is to construct inΩ setsΓQ that correspond to the cones used in the

Lipschitz case. These will only exist for small Whitney cubes, and will in general be

different for each cube. They will not be cones, but will have some similarity to cones in

that at a distancer from Q the setΓQ will contain a ball of radius comparable tor. We
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will think of these astwisting conesand will construct them in Chapter 3, Section 3.3. An

example is shown in Figure 2.4.

Figure 2.2: An example of a twisting cone

The crucial property of the twisting conesΓQ is that they are in some (measure-theoretic)

sense “large enough” to support a reproducing kernelKQ(x) for polynomials. Chapter 4 is

devoted to the construction of a smooth functionKQ on any twisting cone such that

∫

Rn
xαKQ(x) dx =



1 if α = (0, . . . , 0)

0 if α ∈ Nn \ {(0, . . . , 0)}

and therefore ∫

Rn
P(x + y)KQ(y) dy = P(x)

for any polynomialP(x) onRn. (This should be compared to (2.11).)

Once we have a kernelKQ(x) corresponding to each sufficiently small cubeQ we will

defineEQ f (x) by convolution off with KQ as in (2.12). For large Whitney cubesQ it will

suffice to setEQ f = 0. The operatorE will be the smooth sum (2.4) of the operatorsEQ.
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Full details will be given in Chapter 5, Section 5.2. The bulk of Chapter 5 will be spent on

obtaining estimates for terms of the form (2.7) and (2.8). An elementary argument using

Proposition 4.4 of [Jon81], will then show that the resulting function is an extension.

At this point the reader should be warned that the entire proof we give for Theorem

2.1.1 is done under the additional assumption that the domainΩ has diameter at least 1.

This could be avoided by renormalizing our Sobolev spaces so that the polynomials of

degreek−1 in Wk,p(Ω) have norm zero whenΩ has diameter less than 1, however the extra

details add nothing to the proof. Nonetheless the reader should be aware that the norm of

the operator onWk,p(Ω) will go to infinity if the values ofε andδ are held fixed while the

diameter ofΩ goes to zero.



Chapter 3

Locally Uniform Domains

The setting for our construction of Sobolev extension operators is an (ε, δ) locally uniform

domainΩ with diameter at least 1. Recall from (1.4) of the Preliminaries that this is the

quantitative local connectivity property illustrated in Figure 3.

Definition 3.0.1. A domain is(ε, δ)-locally uniform if between any pair of pointsx,y such

that |x− y| < δ there is a rectifiable arcγ(x, y) ⊂ Ω having the properties

length(γ) ≤ |x− y|
ε

(3.1)

dist(z, ∂Ω) ≥ ε |z− x||z− y|
|x− y| (3.2)

The geometry ofΩ enters into the proof of our main result, Theorem 2.1.1, in several

ways, two of which we wish to highlight here.

Recall Example 1.2.1 in which existence of an extension is obstructed by an outward

cusp on∂Ω. Whenever it happens that there are arbitrarily small Whitney cubesQ ∈
W((Ωc)o) such that all Whitney cubesS j of Ω with dist(Q,S j) ≤ Cl(Q) are of sizel(S j) �
l(Q) we should expect to encounter this problem. Lemma 2.4 of Jones [Jon81] shows

that this cannot occur ifΩ is locally uniform andl(Q) sufficiently small. For the proof

30
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Figure 3.1: Local uniformity is a quantitative local connectivity property

of Theorem 2.1.1 we shall want somewhat more than this, requiring instead that for each

Q ∈ W((Ωc)o) there is a nearby set inΩ which is sufficiently large that it supports a

reproducing kernel for polynomials. In Section 3.3 we produce the appropriate set which

we call a twisting cone. The construction of a reproducing kernel on this type of set is the

subject of Chapter 4.

Ω

y

x

Figure 3.2: A domain with inward cusp

An equally serious obstruction to extension is illustrated in Figure 3 in whichΩ ⊂ R2

has an inward-pointing cusp. Heuristically, one can see that a functionf could have small
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derivative onΩ but have| f (x) − f (y)| � |x − y| for points that are close together yet

separated by the cusp. This would require that the derivative of any extension be very

large on Whitney cubesQ ∈ W((Ωc)o) betweenx andy. Of course the picture is by no

means a proof that extension will fail here, however this was proved by Jones in [Jon81]

(see also Theorem 1.3.4 in the Preliminaries). The difficulty arises because within distance

Cl(Q) of Q ∈ W((Ωc)o) there are large pieces ofΩ which are not well connected within

Ω. Conditions (3.1) and (3.2) ensure this cannot happen on a locally uniform domain by

producing a tube connecting each pairS,S′ ⊂ Ω of Whitney cubes for which the quantities

l(Q), l(S), l(S′), dist(Q,S), and dist(Q,S′) are all comparable. We construct such tubes in

Section 3.3 and derive estimates along them in Section 3.4.

3.1 Elementary Lemmas

We will find it convenient to express a number of geometric properties ofΩ in terms of

Whitney cubes. As we wish to reserve the notationQ for cubes of
(
Ωc)o, we shall use

S ∈ W(Ω) for cubes from the Whitney decomposition ofΩ. Following Jones [Jon81] we

say that two Whitney cubestouchif their intersection contains a face of one or both of the

cubes, and that a finite sequence{S1,S2, . . . ,Sm} of Whitney cubes forms achainif S j and

S j+1 touch for j = 1, . . . ,m. A chainS = S1, . . .Sm = S′ is said toconnectS andS′ and to

have lengthm.

The following lemmas are trivial (though sometimes notationally cumbersome) and

included only for completeness.

Lemma 3.1.1. GivenS and S′ Whitney cubes intersecting at a pointx, there is a chain

{S j} of Whitney cubes connectingS to S′ and such thatx ∈ ∩ jS j.

Proof. We may suppose without loss of generality that the pointx is at the origin. Observe
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also that that size of the cubes are not of consequence here. We may therefore label the 2n

cubes that intersect at 0 using vectorsv = (e1,e2, . . . , en) where each of theei is ±1. The

cube labeled (e1,e2, . . . , en) is the one that lies in the unit cube
∏

i[0,ei]. Since two distinct

cubes touch iff their vectors differ in a single component it is clear that a sequence{S j} will

be a chain iff it arises from a sequencev j of vectors in which at most one component is

changed at each step. It is now obvious that starting from thev corresponding toS we may

change one component at a time and (after at mostn changes) obtainv′ corresponding to

S′. This sequence of vectors produces the desired chain. �

Lemma 3.1.2. Given a chain{S j} connectingS to S′ there is a chain consisting only of

cubes from the original chain, connectingS to S′, and having no repeated cubes.

Proof. This is an immediate consequence of the fact that ifS j1 = S j2 with j1 < j2 then

deleting the subsequence
(
( j1 + 1), . . . , j2

)
from the chain{S j} produces

S = S1, . . . ,S j1,S j2+1, . . . ,Sm = S′

which is still a chain connectingS andS′. �

Lemma 3.1.3. If points x and y may be connected by an arcγ intersecting finitely many

Whitney cubes, then the cubesSx 3 x andSy 3 y may be connected by a chain involving

only cubes that intersect the arc and in which no cube is repeated.

Proof. It suffices by the previous lemma to prove that there is a chain built from cubes

intersecting the arc and connectingSx to Sy. This may be done inductively, beginning with

the trivial chain consisting only of the cubeSx. For the inductive step consider a chain

of cubes taken from those intersectingγ, beginning withSx but not includingSy. The

intersection ofγ with the union of the cubes in this chain contains an arc beginning atx

and terminating at a pointz that lies in the intersection of a cube from the chain and a cube
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not in the chain. It is clearly possible to extend our chain so it ends at a cube containingz,

and by Lemma 3.1.1 it is then possible to choose any cube containingz but not contained

in the chain and connect it to the chain using only cubes that contain the pointz. All of

these cubes trivially contain a point ofγ. Since the number of cubes intersectingγ is finite

by assumption this process must eventually joinSy to the chain, proving the lemma. �

We remark in passing that the method used in the preceding lemma produces a chain

containing the arc and then trims it to remove repetitions. This may mean that the final

chain does not contain the arc, however this will not be important for our purposes.

3.2 Chains between Cubes

Connecting two cubes of comparable size

Suppose that we have two Whitney cubesS and S′ of Ω, separated by a distance that

is comparable to the size of both cubes. Jones [Jon81] showed that in this situation the

uniform domain condition implies they are connected by a chain consisting of a bounded

number of cubes of controlled size. The following lemma is essentially his Lemma 2.4.

Lemma 3.2.1.Let S andS′ be Whitney cubes ofΩ that have comparable sizes and sepa-

ration, that is

1
C
≤ l(S)

l(S′)
≤ C,

1
C
≤ |xS − xS′ |

l(S)
≤ C,

1
C
≤ |xS − xS′ |

l(S′)
≤ C

wherexS andxS′ are the centers ofS andS′ respectively. Suppose also thatl(S), l(S′) and

|xS − xS′ | are all less thanδ. Then there is a connecting chainS = S1, . . . ,Sm = S′ of

Whitney cubes that has finite lengthm ≤ C1, and is such that every cubeS j in the chain
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satisfies
ε

C2
≤ l(S j)

l(S)
≤ C2

ε
and

ε

C2
≤ l(S j)

l(S′)
≤ C2

ε

where the constantsC1 andC2 depend only onC andn.

Proof. Consider the rectifiable curveγ connectingxS to xS′ and having the properties guar-

anteed by the local uniformity condition. Any pointz ∈ γ that does not lie inS or S′ has

|z− xS| ≥ l(S)/2 and|z− xS′ | ≥ l(S′)/2, whereupon (3.2) implies

dist(z, ∂Ω) ≥ εl(S)l(S′)
4|xS − xS′ | ≥

ε |xS − xS′ |2
4C2|xS − xS′ | =

ε |xS − xS′ |
4C2

and it follows from Lemma 1.1.2 that the Whitney cubeS(z) containingz has length

l(S(z)) ≥ ε |xS − xS′ |
20C2

√
n

From this and the observation that a curve of lengthL intersects no more than 2n+1 Whitney

cubes of lengthL we deduce that the number of cubes intersectingγ does not exceed

2n+1(20C2√n)/ε. Moreover, a similar calculation gives an estimate on the size of the cubes

involved. Forz as before:

dist(z, ∂Ω) ≥ εl(S)l(S′)
4|xS − xS′ |

≥ εl(S)l(S′)
2C(l(S) + l(S′))

≥ ε

4C
min{l(S), l(S′)}

≥ ε

4C2
max{l(S), l(S′)}

and therefore

l(S(z)) ≥ ε

20C2
√

n
max{l(S), l(S′)}
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is the required lower bound on the size of the cubes we want for our chain. The upper

bound arises even more simply from the fact that the curve has length at most|xS − xS′ |/ε
and containsxS which has distance at most

(
4 +
√

n/2
)
l(S) from ∂Ω. It follows that the

curve lies within (4+
√

n/2+C/ε)l(S) of ∂Ω and cannot intersect Whitney cubes of length

larger than this, so that all Whitney cubes intersecting the curveγ have the size described

in the conclusion of the lemma. An application of Lemma 3.1.2 now implies that this

collection of cubes contains a chain of the type sought. �

Connecting a small cube to a large cube

In this context alarge cube is one having length comparable toεδ/
√

n. This is the largest

size of cube which may be found all along the boundary, in the sense that any cube fromΩ

(or even any point of∂Ω) may be connected to a cube of this size by an arc of comparable

length, and thence by a chain with known structure. This is made precise in the following

lemmas.

Lemma 3.2.2.Let x ∈ Ω satisfydist(x, ∂Ω) < εδ/10
√

n. Then there is a Whitney cubeS

of Ω with l(S) ≥ εδ/10
√

n, and such thatx may be connected to the centerxS of S by a

rectifiable curve lying within distance2εδ of ∂Ω and of length at mostδ/ε.

Proof. If x already lies in a Whitney cubeS of side length at leastεδ/10
√

n then we need

only connectx to the centerxS by a straight line. It cannot lie in a larger cube as it is too

close to∂Ω. Hence we assume that the Whitney cube containingx has length less than

εδ/10
√

n.

SinceΩ is connected and of diameter at least 1 there is a pointy ∈ Ω such that|x−y| = δ.

From the definition of local uniformity there is a rectifiable curveγ of length at mostδ/ε

joining x to y, and in particular containing a pointz equidistant from bothx andy. It is
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immediate that|z− x| = |z− y| ≥ δ/2, so atzwe have by (3.2)

dist(z, ∂Ω) ≥ ε |z− x||z− y|
|x− y| ≥ εδ/2

and therefore by Lemma 1.1.2 that the Whitney cubeS′ 3 zhas lengthl(S′) ≥ εδ/10
√

n.

Having exhibited a Whitney cube of length at leastεδ/10
√

n on the curve fromx to y it

is now legitimate to take the first such cube encountered as we traverse the curve beginning

at x. Call this cubeS. The piece of curve connectingx to S lies entirely within cubes

smaller thanεδ/10
√

n, hence within distanceεδ of the boundary. The cubeS hasl(S) ≥
εδ/10

√
n but must be adjacent to a cube with length smaller than that, so by (1.1) and (1.2)

we havel(S) ≤ 4εδ/10
√

n and it is within distance 2εδ of the boundary. Moreover the

curve fromx to S is no longer than that fromx to z, so has length at mostδ/ε − δ/2. We

can adjoin to this curve a line segment from its endpoint on∂S to the centerxS and have

thereby connectedx to xS by a curve of total length at most

δ/ε − δ/2 + εδ/5 ≤ δ/ε

and the proof is complete. �

Using the curves from the previous lemma it is possible to describe an aspect of the

geometry near∂Ω which will be sufficient for our construction of reproducing kernels for

polynomials in Chapter 4. Corresponding to a sufficiently small Whitney cubeQ of (Ωc)o

we have a chain{S j} of Whitney cubes ofΩ beginning at scale comparable tol(Q) and

separated froml(Q) by distance at mostCl(Q). Modulo some constant multiples the chain

of cubes widens linearly, like a cone, as it connects from scalel(Q) to the large scale

εδ/10
√

n. We think of this chain as an analogue of the cones found at boundary points of

Lipschitz domains, but the chain may curve or even spiral, as shown in Figure 3.2. If it
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is continued to∂Ω it may spiral infinitely, as is readily seen to be the case for the Koch

snowflake domain.

Figure 3.3: A chain of cubes inΩ

Lemma 3.2.3.Let Q be a Whitney cube ofW((Ωc)o) with l(Q) ≤ εδ

200n
. Then there is a

Whitney cubeS∗ of Ω with

4
√

n ≤ l(S∗)
l(Q)

≤ 16
√

n (3.3)

dist(Q,S∗) ≤ Cn
ε

l(Q) (3.4)

and a chain{S∗ = S1,S2, . . . ,Sm = S} with l(S) ≥ εδ/10
√

n and having the property that

ε

Cn
≤ l(S j)

dist(Q,S j)
≤ 1 (3.5)

whereC is a constant independent ofn andε.
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Proof. The basic properties of the Whitney decomposition (see Lemma 1.1.1) ensure that

there is a pointx ∈ Ω such that dist(x,Q) ≤ 5
√

nl(Q). This point may be chosen as close to

∂Ω as we desire; in particular we ensure dist(x, ∂Ω) < l(Q). Beginning from this point we

apply Lemma 3.2.2 to obtain a curveγ connectingx to a pointxS which is the center of a

Whitney cubeS with l(S) ≥ εδ/10
√

n.

Consider the collection of cubes fromW(Ω) that intersectγ. By Lemma 3.1.3 we

know this collection contains a chain of cubes fromx to S, so we need only see that there

is an appropriate starting cube on this chain and that the estimates hold. Observe that the

chain contains a cube of length at most dist(x, ∂Ω) < l(Q) and also a cube of lengthl(S) >

16
√

nl(Q), hence by property (1.2) of the Whitney decomposition it certainly contains

one cube of length between 4
√

nl(Q) and 16
√

nl(Q). Ordering the cubes along the chain

beginning atx we call the last cube of this lengthS∗. SinceS∗ , S we can apply the local

uniformity property (3.2) toz ∈ γ ∩ S∗ to obtain

80nl(Q) ≥ 5
√

nl(S∗)

≥ dist(z, ∂Ω)

≥ ε |z− x||z− xS|
|x− xS|

≥ ε |z− x|
2

so that|z− x| ≤ 160n
ε

l(Q) and therefore dist(Q,S∗) ≤ Cn
ε

l(Q)

Let {S j} be the chain fromS∗ to S. By Lemma 1.1.2 we know 5
√

nl(S j) ≥ dist(S j , ∂Ω).

It is also clear that for anyz ∈ γ ∩ S j

dist(S j , ∂Ω) ≥ dist(z, ∂Ω) − √nl(S j)
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therefore applying the estimate (3.2) from the locally uniform condition in the caseS j , S

6
√

nl(S j) ≥ dist(z, ∂Ω)

≥ ε |z− x||z− xS|
|x− xS|

≥ ε

2
|z− x| (3.6)

≥ ε

2
(|z− xQ| − |xQ − x|)

≥ ε

2
(
dist(xQ,S j) − 5

√
nl(Q)

)

whereupon

12
√

n
ε

l(S j) ≥ dist(Q,S j) − 6
√

nl(Q)

and using the fact thatl(S j) ≥ l(S∗) ≥ 4
√

nl(Q) we have

dist(Q,S j) ≤ 12
√

n
ε

l(S j) + 24nl(Q) ≤ Cn
ε

l(S j)

from which (3.5) follows for all cubes butS. For the cubeS we can repeat the above

computation forz ∈ ∂S rather thanz < S. All of the estimates are identical. �

3.3 Tubes and Twisting Cones

Construction

In order to simplify some of our proofs we will not work directly with the chains of cubes

constructed in the previous section. Instead we perform an elementary construction that

gives a region inside each chain on which it is easy to propagate the estimates we shall
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need later.

Let {S j} be a chain of Whitney cubes as constructed above, with no repeated cubes. For

each j let aj be the center of the cubeS j. Also let bj be the center of the faceS j ∩ S j+1.

Passing through these sequences of points in the ordera1,b1,a2, . . . , bm−1,am we trace out

a piecewise linear curveγ. At each pointx ∈ γ define a radiuss(x) which is
1
2

l(S j) at each

xj and
1
2

min{l(S j), l(S j+1)} at eachyj, and between is given by the convex combination

s(x) =



(1− λ)
l(S j)

2
+ λ

min{l(S j), l(S j+1)}
2

if x = (1− λ)xj + λyj

(1− λ)
min{l(S j), l(S j+1)}

2
+ λ

l(S j+1)

2
if x = (1− λ)yj + λxj+1

(3.7)

Finally, let Γ be the set of points that lie within radiuss(x) of somex ∈ γ. The result is

shown in Figure 3.3.

Figure 3.4: The twisting coneΓ

We record a basic property ofΓ that will be useful later.
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Lemma 3.3.1. If y ∈ Γ ∩ S j then

B
(
y,2
√

nl(Q)
)
⊂ S j−1 ∪ S j ∪ S j+1

Proof. It is clear from the definition ofΓ that all pointsx with

|x− y| ≤ 1
2

min{l(S j−1), l(S j), l(S j+1)}

are inS j−1 ∪ S j ∪ S j+1. However in the proof of Lemma 3.2.3 the smallest of the cubesS j

wasS∗ and had length at least 4
√

nl(Q) by (3.3). The lemma follows. �

If our chain is one of those described in Lemma 3.2.1 than the setΓ has radius compa-

rable to the lengths of the cubes at its ends, with bounds depending only onε, n, and the

constantC in the lemma. SuchΓ are calledtubes.

In the case that the chain connects a small cube to a large cube, as in Lemma 3.2.3, we

have instead thatΓ is a twisting cone. The name describes the fact that the radiuss(x) is

comparable to the function that grows linearly alongγ and is equal tol(S1) at one end and

l(Sm) at the other. Like the chain that contains it, a twisting cone may contain spirals.

Counting Tubes

Motivated by the discussion at the beginning of this chapter we anticipate the need to

consider for eachQ ∈ W((Ωc)o) the Whitney cubesS ⊂ Ω with l(S) ≥ C1l(Q) and

dist(Q,S) ≤ C2l(Q), and the tubes connecting them. The estimates below are essentially

those in equations (3.1) and (3.2) of Jones [Jon81].

Fix C1 andC2 and let

F (Q) = {S j ∈ W(Ω) : l(S) ≥ C1l(Q) and dist(S,Q) ≤ C2l(Q)} (3.8)
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It is clear that any pairS j ,Sk from F (Q) satisfy the conditions of Lemma 3.2.1 so we

may take a chain{Tl(S j ,Sk)} connecting them and containing at mostC3 cubes, where

C3 = C3(ε, n,C1,C2). As there are finitely many cubes inF (Q) we have

∥∥∥∥∥∥∥∥
∑

S j ,Sk∈F (Q)

∑

l

ΨTl (S j ,Sk)(x)

∥∥∥∥∥∥∥∥
L∞

≤ C4

whereΨA(x) is the characteristic function of the setA.

Further notice that the cubesTl(S j ,Sk) all have length comparable tol(Q) and that

dist(Q,Tl) ≤ C5l(Q). It follows that the chains arising by the above construction applied to

the setF (Q′) can only intersect those corresponding toF (Q) for finitely many choices of

Q′, and therefore that

∥∥∥∥∥∥∥∥
∑

Q∈W((Ωc)o)

∑

S j ,Sk∈F (Q)

∑

l

ΨTl (S j ,Sk)(x)

∥∥∥∥∥∥∥∥
L∞

≤ C6 (3.9)

whereC6 = C6(ε, n,C1,C2).

Counting Cones that Intersect a Cube

We record one other estimate connected to the discussion at the beginning of this chap-

ter. We expect at some point to have operators defined by convolution against functions

supported on twisting cones. Any estimates for these will need to take into account the

possibility that the cones overlap, and we might therefore expect to need a bound on how

many twisting cones can intersect a given Whitney cube fromΩ. Unfortunately no such

bound exists, and in fact most cubes will meet infinitely many twisting cones. What is true,

however, is that there is a bound on the number of twisting conesΓQ with ΓQ ∩ S , ∅ and

with Q having a fixed scale.

Suppose for each sufficiently smallQ ∈ W((Ωc)o) we have fixed a corresponding twist-
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ing coneΓQ. Fix S ∈ W(Ω) and letG(S) be the set of allQ ∈ W((Ωc)o) such that

ΓQ ∩ S , ∅. Since the smallest cube in the chain from whichΓQ is derived has length

either l(Q) or 4l(Q) we see that allQ ∈ G(S) havel(Q) ≤ l(S). Consider thoseQ with

2j l(Q) = l(S). All of these must lie withinCl(S)/ε of S, otherwise the curve joining them

would be of length more thanCl(S) and the linear growth condition (3.5) would be violated.

Within that region there are at most
(
C2j/ε

)n candidate cubesQ, so we have shown

#{Q ∈ G(S) : 2 j l(Q) = l(S)} ≤ C(ε)2n j (3.10)

3.4 Estimation along Twisting Cones

The main purpose of introducing the notions of chains and twisting cones above was to

elucidate the geometry ofΩ in a fashion that allows us to estimate functions by their deriva-

tives along chains of cubes. Essentially, what we seek is a Taylor expansion of a functionf

along a twisting cone. Since the functions we wish to apply this to will be Sobolev rather

than smooth, the error estimates for our approximations will be of the form of generalized

Poincaŕe inequalities. In its usual form the generalized Poincaré inequality holds for a ball,

and may be written as follows

Theorem 3.4.1.If f ∈Wk,p(B(0, r)) satisfies

∫

B(0,r)
Dα f = 0 for all |α| ≤ k− 1 (3.11)

then for all1 ≤ p ≤ ∞
‖ f ‖Lp(B(0,r)) ≤ C(k)rk‖∇k‖Lp(B(0,r)) (3.12)

The proof of this theorem is standard. It may be found, for example, as Theorem 6.30 in

[AF03], or as Lemma 1.1.11 in [Maz85].



CHAPTER 3. LOCALLY UNIFORM DOMAINS 45

In particular we note that from anyf ∈Wk,p we may subtract the polynomial

P(x) =
∑

|α|≤k−1

xα

α!

?

B
Dα(ξ) dξ (3.13)

and thereby ensuref (x) − P(x) satisfies (3.11). We callP(x) the polynomialfitted to f on

B.

A standard application of Theorem 3.4.1 allows estimation of the behavior off along

a sequence of overlapping balls. Under the assumption that the measure of the overlap for

each pair of balls is comparable to the measure of both balls, it is possible to control the

differences between successive polynomials by theLp norm of∇k f on the union of the

balls. Usually the comparison of two polynomials on such overlapping balls is done by

noticing ‖P − P̃‖Lp(B1) ≤ C‖P − P̃‖Lp(B2). Unfortunately this approach is not optimal for

our problem because the bound grows exponentially with the number of cubes traversed.

For estimates along the tubes of Lemma 3.2.1 this is not an issue because the number

of cubes in the chain is bounded by constants depending on the geometry ofΩ, however

there is no such universal bound on the number of cubes in a twisting cone. It is perhaps

interesting to note that using this method gives a version of Taylor’s estimate in which

‖ f − P‖Lp is bounded bydk+M whered is the distance along the twisting cone andM is a

constant depending on the geometry. This is in contrast to the familiar growthdk in the

classical Taylor theorem. Of course it is not possible to get exactlydk for the situation

we are considering, because the increasing width of the twisting cone implies‖ f − P‖Lp

is taken over cubes of increasing size. If we average over those cubes as in the proof of

Lemma 3.4.2 below then the result is as expected.

Before we give our estimate for the behavior off along a twisting coneΓ it will be

helpful to fix some notation. Recall thatΓ is centered on a piecewise linear curveγ and

contained in a chain of cubes{S j}. The vertices ofγ, calledaj andbj in Section 3.3 will
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here be denoted{zj}. There is a radiuss(z) at eachz ∈ γ comparable to the size of the

enclosing cubeS j. We useBj = B(zj , s(zj)) for the balls around the vertices andPk(Bj; f )

for the polynomial of degreek fitted to f on Bj.

Lemma 3.4.2.Let{S j} be a chain of Whitney cubes as described in Lemma 3.2.1 or Lemma

3.2.3, andΓ be the twisting cone aroundγ in the chain as described in Section 3.3. Lets(z)

be the radius ofΓ at z ∈ γ, write z0 andzm for the endpoints ofγ, andB0 = B(z0, s(z0)) and

Bm = B(zm, s(zm)) for the balls around these endpoints.

Considerf ∈Wk,p(Ω) where1 ≤ p < ∞. If P(x) is the polynomial of degreek− 1 fitted

to f on the ballB0 then

∥∥∥ f (x) − P(x)
∥∥∥

Lp(Bm)
≤ C

(
l(Sm)

)k−1
m∑

j=1

l(S j)

(
l(Sm)
l(S j)

)n/p ∥∥∥∇k f (y)
∥∥∥

Lp(S j )
(3.14)

while for f ∈Wk,∞(Ω)

∥∥∥ f (x) − PQ(x)
∥∥∥

L∞(Bm)
≤ C l(Sm)k

∥∥∥∇k f
∥∥∥

L∞(Ω)
(3.15)

whereC = C(n, ε, k, p).

Proof. Suppose 1≤ p < ∞. We begin by examining a special case that occurs along each

segment of the curveγ. Let k = 1 and consider the set consisting of the convex hull of the

unit ball B centered at the origin and a ball of radius (1+ λ) centered at the pointa. Use

s(t) = 1 + λt for the radius at positionta along the central axis. This is a convex set, so

smooth functions are dense in the Sobolev functions (by an easy mollification argument)

and it suffices to prove our estimates under the assumption thatf is differentiable. For each

ξ ∈ B(0,1) we have

f (a + (1 + λ)ξ) − f (ξ) =

∫ 1

0

∂ f
∂t

(ξ + (a + λξ)t) dt
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=

∫ 1

0
∇ f (ξ + (a + λξ)t) · (a + λξ) dt

from which by Jensen’s inequality and the fact|ξ| ≤ 1

∫

B

∣∣∣ f (a + (1 + λ)ξ) − f (ξ)
∣∣∣p dξ ≤

∫

B

∫ 1

0

∣∣∣∇ f ((1 + λt)ξ + at)
∣∣∣p|a + λξ|p dt dξ

≤ (|a| + λ)p

∫ 1

0

∫

B(at,1)

∣∣∣∇ f (s(t)ξ)
∣∣∣p dξ dt

≤ (|a| + λ)p

∫ 1

0

∫

B(at,s(t))
|∇ f (y)|p dy

(s(t))n
dt (3.16)

However the usual Poincaré theorem fork = 1 states

∫

B(0,1)

∣∣∣∣ f (ξ) −
?

B(0,1)
f (x) dx

∣∣∣∣
p
dξ ≤ C

∫

B(0,1)
|∇ f (ξ)|p dξ (3.17)

And we notice that the average off is precisely the zero order polynomial approximation

P0(B; f ) =

?

B(0,1)
f (x) dx

so we may combine this with (3.16) and (3.17) to obtain

(∫

B

∣∣∣ f (a + (1 + λ)ξ) − P0(B; f )
∣∣∣p dξ

)1/p

≤ C‖∇ f ‖Lp(B) +

(∫

B

∣∣∣ f (a + (1 + λ)ξ) − f (ξ)
∣∣∣p dξ

)1/p

≤ C‖∇ f ‖Lp(B) + (|a| + λ)

(∫ 1

0

∫

B(at,s(t))
|∇ f (y)|p dy

(s(t))n
dt

)1/p
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which by a change of variables is

(?

B(a,1+λ)

∣∣∣ f (y) − P0(B; f )
∣∣∣p dy

)1/p

(3.18)

≤ C‖∇ f ‖Lp(B) + (|a| + λ)

(∫ 1

0

∫

B(at,s(t))
|∇ f (y)|p dy

(s(t))n
dt

)1/p

(3.19)

If we apply the Poincaré estimate (3.17) again, but this time on the ballB′ = B(a,1+ λ) we

have

?

B′

∣∣∣ f (y) − P0(B
′; f )

∣∣∣p dy =

?

B′

∣∣∣∣ f (y) −
?

B′
f (x) dx

∣∣∣∣
p
dy

≤ C(1 + λ)p

?

B′
|∇ f (x)|p dx

and in conjunction with (3.18) we have shown

∣∣∣P0(B
′; f ) − P0(B; f )

∣∣∣ ≤
(?

B′

∣∣∣P0(B
′; f ) − f (y) + f (y) − P0(B; f )

∣∣∣p dy

)1/p

≤ C(1 + λ)

(?

B′
|∇ f (y)|p dy

)1/p

+ C

(?

B
|∇ f (y)|dy

)1/p

+ (|a| + λ)

(∫ 1

0

?

B(at,s(t))
|∇ f (y)|p dy dt

)1/p

(3.20)

We think ofΓ as decomposed into a union of sets having the geometry just discussed,

soΓ = ∪Γl whereΓl is the convex hull ofB(zl , s(zl)) andB(zl+1, s(zl+1)). The estimate (3.20)

applies to eachΓl in the form

∣∣∣P0(Bl; f ) − P0(Bl−1; f )
∣∣∣ ≤ Cs(zl)

(?

Bl

|∇ f (y)|p dy

)1/p

+ Cs(zl−1)

(?

Bl−1

|∇ f (y)|dy

)1/p

+ |zl − zl−1|
(∫ zl

zl−1

?

B(z,s(z))
|∇ f (y)|p dy

|dz|
|zl − zl−1|

)1/p

≤ Cs(zl)

(?

Bl

|∇ f (y)|p dy

)1/p

+ Cs(zl−1)

(?

Bl−1

|∇ f (y)|dy

)1/p
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+ C|zl − zl−1|
(?

Γl−1

|∇ f (y)|p dy

)1/p

(3.21)

and we can write

(?

Bj

∣∣∣ f (y) − P0(B1; f )
∣∣∣p dy

)1/p

=


?

Bj

∣∣∣∣ f (y) − P0(Bj; f ) +

j−1∑

l=1

(P0(Bl; f ) − P0(Bl−1; f ))
∣∣∣∣
p
dy


1/p

≤
(?

Bj

∣∣∣ f (y) − P0(Bj; f )
∣∣∣p dy

)1/p

+

j−1∑

l=1

∣∣∣P0(Bl; f ) − P0(Bl−1; f )
∣∣∣

≤ C
j∑

l=1

s(zl)

(?

Bl

|∇ f (y)|p dy

)1/p

+ C
j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇ f (y)|p dy

)1/p

≤ C
j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇ f (y)|p dy

)1/p

(3.22)

where the last step uses the fact that

s(zl)
p

?

Bl

|∇ f (y)|p dy =

(
s(zl)
|zl − zl−1|

)p |Γl−1|
|Bl | |zl − zl−1|p

?

Γl−1

|∇ f (y)|p dy

≤ C(p)|zl − zl−1|p
?

Γl−1

|∇ f (y)|p dy

This concludes our discussion of the casek = 1.

Fortunately the case of generalk is not dissimilar from what we have done fork = 1.

We suppose inductively that for any smooth functiong and any ballB = B(x, s(x)) along

the segment [zj−1, zj] we have

(?

B

∣∣∣g(y) − Pk−2(B1; f )
∣∣∣p dy

)1/p

≤ C
(
l(γ j)

)k−2
j∑

l=1

|zl − zl−1|
(?

Γl−1

∣∣∣∇k−1g(y)
∣∣∣p dy

)1/p

(3.23)
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and we note, by a trivial computation from (3.13), that the components ofPk−2(B;∇ f )

coincide with those of∇Pk−1(B; f ).

Returning to the case of a conical piece ofΓ with notation as before, we follow the

same method but for the functionf − Pk−1(B; f ) and using the above observation about

∇Pk−1(B; f ). Herea = zj −zj−1 andλ+ 1 = s(zj)/s(zj−1), so that we are moving on the cone

from Bj−1 to Bj.

?

Bj−1

∣∣∣( f − Pk−1(B; f )) (a + λξ) − ( f − Pk−1(B; f )) (ξ)
∣∣∣p dξ

≤ (|a| + λ)p

∫ 1

0

?

Bj−1

∣∣∣∇ ( f − Pk−1(B; f )) (ξ + (a + λξ)t)
∣∣∣p dξ dt

= (|a| + λ)p

∫ 1

0

?

Bj−1

∣∣∣(∇ f − Pk−2(B;∇ f )) (ξ + (a + λξ)t)
∣∣∣p dξ dt

≤ C|zj − zj−1|p
∫ 1

0

?

B(at,1+λt)

∣∣∣(∇ f − Pk−2(B;∇ f )) (y)
∣∣∣p dξ dt

whence by our inductive assumption applied tog = ∇ f , and using thatat ∈ [zj−1, zj]

≤ C|zj − zj−1|pl(γ j)
(k−2)p

∫ 1

0


j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k−1g(y)|p dy

)1/p


p

dt

≤ Cl(γ j)
(k−2)p|zj − zj−1|p


j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p


p

(3.24)

since the integrand is no longer dependent ont. We use this to write

(?

Bj

∣∣∣( f − Pk−1(B; f )) (y)
∣∣∣p dy

)1/p

=

(?

Bj−1

∣∣∣( f − Pk−1(B; f )) (a + λξ)
∣∣∣p dξ

)1/p

≤
(?

Bj−1

| f (ξ) − Pk−1(B; f )(ξ)|p dξ

)1/p
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+ C l(γ j)
(k−2)|zj − zj−1|

j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p

(3.25)

It is clear from inductive application of (3.25) and a single use of the Poincaré inequality

that

(?

Bm

∣∣∣( f − Pk−1(B; f )) (y)
∣∣∣p dy

)1/p

≤
(?

B1

| f (ξ) − Pk−1(B; f )(ξ)|p dξ

)1/p

+ C
m∑

j=1

l(γ j)
(k−2)|zj − zj−1|

j∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p

≤ C(s(z1))
k

(?

B
|∇k f (y)|p dy

)1/p

+ C
m∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p


m∑

j=1

l(γ j)
(k−2)|zj − zj−1|



≤ C
(
l(γm)

)(k−1)
m∑

l=1

|zl − zl−1|
(?

Γl−1

|∇k f (y)|p dy

)1/p

(3.26)

Comparing this to (3.23) and using the base casek = 1 established in (3.22) we see that

(3.26) is true for allk.

It is not difficult to pass from (3.26) to the desired estimate (3.14). The setsΓl are

contained in cubes of the chain{S j}. If Γl ∩S j , ∅ then|Γl | and|S j | are comparable and the

length|zl − zl−1| is is comparable tol(S j). Moreover the lengthl(γ j) is comparable tol(S j)

with a constant depending onε, because the length of a subarc ofγ is comparable to the

separation of the endpoints and we know (3.5). Multiplying both sides of (3.26) by|Bm|1/p

and rewriting the bound in terms ofl(S j) we have

∥∥∥ f − Pk−1(B; f )
∥∥∥

Lp(Bm)
≤ C

(
l(Sm)

)k−1
m∑

j=1

l(S j)

(
l(Sm)
l(S j)

)n/p ∥∥∥∇k f (y)
∥∥∥

Lp(S j )
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This concludes the proof for the case 1≤ p < ∞.

Whenp = ∞ the argument is considerably simpler. We use a well known consequence

of the Sobolev Embedding Theorem, namely thatf ∈ Wk,p(Ω) has a representative for

which ∇k−1 f is Lipschitz on balls contained inΩ, with Lipschitz norm‖∇k f ‖L∞(Ω). Inte-

grating∇k f along a rectifiable curve will then give bounds for lower order derivatives as

is usual in Taylor’s Theorem. As the uniform domain condition ensures that anyx andy

with |x− y| < δ are joined by a large number of rectifiable curves of length not exceeding

C(ε)|x− y|, we conclude immediately that

∣∣∣( f (x) − PQ(x)
) − (

f (y) − PQ(y)
)∣∣∣ ≤ C(ε, k)|x− y|k‖∇k f ‖L∞(Ω)

This implies both that
∣∣∣ f (x)−PQ(x)

∣∣∣ is bounded byC‖∇k f ‖ l(S0)k onB0 and that
∣∣∣ f (x)− f (y)

∣∣∣
is bounded byC‖∇k f ‖ l(Sm)k for x ∈ B0 andy ∈ Bm, so (3.15) follows and the lemma is

proven. �



Chapter 4

Moments and Kernels

In this Chapter we construct the reproducing kernels needed to define the operatorsEQ for

each Whitney cubeQ from
(
Ωc)o. The critical feature of the kernel corresponding toQ is

that it should be supported on a set that is in some sense “near” toQ, yet we have only a

limited amount of control on the geometry of such sets. Nonetheless we will see that the

twisting cones constructed in Section 3.3 are large enough to support reproducing kernels

for polynomials. Our main result is

Theorem 4.0.3.Let R > 0 andη < 1 be fixed constants (which may be thought of as the

initial radius and the angle of a twisting cone). IfΓ ⊂ Rn has the property that for every

r ≥ R there isx with |x| = r and

B(x, η|x|) ⊂ Γ (4.1)

then there is a smooth functionK(x) supported onΓ and with the properties

∫

Rn
xαK(x) dx =



1 if α = (0, . . . , 0)

0 if α ∈ Nn \ {(0, . . . , 0)}
(4.2)

∣∣∣K(x)
∣∣∣ ≤ C1

|x|n−1
exp

−
(
1
2

log
|x|
C2

)1/2

exp

(
1
2

log
|x|
C2

)1/2 (4.3)

53
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whereC1 = C1(n, η,R) andC2 = C2(n, η,R).

We prove this theorem using a lemma which describes the desired geometry ofΓ in

rather more detail.

Lemma 4.0.4.For fixed constantsT and j0 let {r j} be the sequence

r j = T exp
[
2 log2( j + j0)

]

Fix also a constantt, and suppose thatΓ ⊂ Rn has the property that for eachj there is a

setΞ j ⊂ Sn−1 of the form

Ξ j = Sn−1 ∩ B(ξ0, t) (4.4)

with {
x : r j ≤ |x| ≤ r j+1 and

x
|x| ∈ Ξ j

}
⊂

(
Γ ∩ {

x : r j ≤ |x| ≤ r j+1
})

(4.5)

then there is a smooth functionK(x) supported onΓ which has the property(4.2) and

satisfies the estimate(4.3)with constantsC1 = C1(n, t, j0,T) andC2 = C2(n, t, j0,T).

Proof. We prove the lemma implies the theorem by showing that the assumption (4.1)

implies there are values ofj0 andT depending onRandη such that the geometry ofΓ is as

in Lemma 4.0.4 witht = η/2.

If we can be certainr0 ≥ R, then irrespective of the specific values ofj0 andT, the

condition (4.1) ensures that for anyj there isxj with |xj | = (r j + r j+1)/2 and

B

(
xj ,

η(r j + r j+1)

2

)
⊂ Γ

which in turn implies that for allr ∈ [r j , r j+1] there are slightly smaller balls at radiusr that
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also lie inΓ. To be concrete:

B

(
r

x
|x| ,

1
2

(
η2(r j + r j+1)

2 − (r j+1 − r j)
2
)1/2

)
⊂ B

(
xj ,

η(r j + r j+1))

2

)
⊂ Γ

It follows immediately that we may take

Ξ j = Sn−1 ∩ B

(
x
|x| ,

1
2r j+1

(
η2(r j + r j+1)

2 − (r j+1 − r j)
2
)1/2

)

and have condition (4.5) witht = η/2, providing only that for allj

1
2r j+1

(
η2(r j + r j+1)

2 − (r j+1 − r j)
2
)1/2

>
η

2

which is the same as

η2(r j + r j+1)
2 − (r j+1 − r j)

2 ≥ η2r2
j+1 (4.6)

Now if (2 − η)r j+1 ≤ (2 + η)r j we obtain

η(r j+1 + r j) ≥ 2(r j+1 − r j)

η2(r j+1 + r j
)2 ≥ 4

(
r j+1 − r j

)2

and therefore

η2(r j + r j+1
)2 − (r j+1 − r j)

2 ≥ 3
4
η2(r j + r j+1

)2

≥ 3
4

(
4

2 + η

)2

η2r2
j+1

≥ 4
3
η2r2

j+1
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so a sufficient condition for (4.6) is

r j+1

r j
≤ 2 + η

2− η

from which it suffices that

exp
[
2 log2( j + j0 + 1)− 2 log2( j + j0)

]
≤ 2 + η

2− η (4.7)

We pause to notice that the derivative of
(
log2(x + 1)− log2 x

)
is

2 log(x + 1)
x + 1

− 2 logx
x

so that
(
log2(x + 1)− log2 x

)
is decreasing forx > 1. Moreover

log2(x + 1)− log2 x =
(
log(x + 1) + log x

)(
log(x + 1)− log x

)

= log x(x + 1) log

(
1 +

1
x

)

≤ 1
x

log x(x + 1)

from which we conclude the limit of
(
log2(x + 1)− log2 x

)
asx→ ∞ is zero.

It follows that

exp
[
2 log2( j + j0 + 1)− 2 log2( j + j0)

]
≤ exp

[
2 log2( j0 + 1)− 2 log2( j0)

]

≤ 2 + η

2− η

providing that j0 is sufficiently large. This establishes (4.7) and therefore (4.5). All that

remains of the proof is to set

T = Rexp
[−2 log2 j0

]
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so thatr0 = R and the above reasoning is valid for allr j. �

Most of the remainder of this chapter is spent proving Lemma 4.0.4, though we first

discuss a little of the history of theorems like Theorem 4.0.3. This theorem belongs in

some sense to the theory of moments, but does not seem to have attracted a lot of attention

in the past. Indeed the only previous results are for sets inR, a situation in which the

geometric condition reduces to a near triviality. In Section 4.2 we present an approach to

this one-dimensional problem which does not appear in the literature, and which has an

additional property that is useful in establishing the result in higher dimensions. Section

4.3 is devoted to the construction of certain functions on the setsΞ j ⊂ Sn−1 and in Section

4.4 we complete the construction ofK(x) and the proof of Lemma 4.0.4.

4.1 Historical Remarks

The problem addressed in Theorem 4.0.3 requires finding a function with specified mo-

ments, support in a given set, and controlled decay. A special case is obtained when we

restrict to the the one dimensional situation and take the set to be the half line [1,∞) ⊂ R,

so that we seek a functionk(x) with

∫ ∞

1
x jk(x) dx =



1 if j = 0

0 if j ∈ N \ {∞}
(4.8)

In this form the problem belongs to the classical theory of moments. Early questions in the

study of moments focused on whether a given sequence arises as the moments of a function

or distribution, usually assumed positive, on a particular set. In particular we mention the

Hamburger, Stieltjes, and Hausdorff moment problems, which ask precisely this question

on each of (−∞,∞), [0,∞) and [0,1] respectively. A complementary problem is whether
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such a moment sequence is unique, or equivalently, whether there is a non-zero function

f (x) all of whose moments are zero. By settingf (x) = xk(x) we see that on [1,∞) this is

the same as asking for a solution to (4.8).

The observation that (4.8) is equivalent to the uniqueness problem for a moment se-

quence immediately provides some limitations on the properties a solutionk(x) could enjoy.

For example the Weierstrass approximation theorem ensures thatk(x) cannot be compactly

supported, while the density of the Laguerre polynomials on [0,∞) with the weighte−x

implies thatk(x) cannot decay likee−x. Nonetheless, in his seminal works [Sti94a, Sti94b]

on continued fraction and moments, Stieltjes gave the following explicit example

∫ ∞

0
rk sin(2π log r)e− log2 r dr =

∫ ∞

0
e−(log r−(k−1)/2)2e(k−1)2/4 sin(2π log r)

dr
r

= e(k−1)2/4

∫ ∞

−∞
e−u2

sin

(
2π

(
u +

k− 1
2

))
du

= 0 for all k ∈ N

since sin(2πu + π(k− 1)) is an odd function. We observe that the function

sin(2π log r)e− log2 r

has slow exponential decay.

Later work established bounds on the possible decay rates for functions of this type and

produced various methods for their construction. We mention for example the criterion of

Carleman for determinacy of a moment sequence (see [Car26]) and the example given by

Hamburger in [Ham19] of a function with zero moments. For these and other diversions the

interested reader is referred to the standard texts [ST43] and [AK62]. This is a vast theory

and we cannot even survey the interesting results here. Instead we present an approach

using the calculus of residues which may be found in [Ste70], Chapter VI, Section 3.2.
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This is the method used by Stein to give the example mentioned in (2.10) of Chapter 2.

Consider the domainD = C \ [1,∞). The function

χ(z) = exp(ei3π/4(z− 1)1/4)

is well defined and analytic onD and has a jump discontinuity along∂D = [1,∞). Let

γ be the closed, positively oriented contour consisting of the circular arc around 0 joining

R+ iδ to R− iδ, two line segments onz = ±iδ, and a semicircular arc radiusδ aroundz = 1.

Applying Cauchy’s theorem we have

∫

γ

zlχ(z) dz=



2πi
e

if l = −1

0 otherwise

Notice thatχ(z) has well defined limits from above and below the line [1,∞). From above

it converges to exp
(
ei3π/4(x− 1)1/4

)
and from below to exp

(
e−i3π/4(x− 1)1/4

)
. Sinceχ(z) has

rapid decay we may take the limit asR→ ∞ thenδ→ 0 to find that

∫ ∞

1
xl exp

(
ei3π/4(x− 1)1/4

)
dx−

∫ ∞

1
xl exp

(
iei3π/4(x− 1)1/4

)
dx =



2πi
e

if l = −1

0 otherwise

from which it follows that

k(x) =
e
πx

Im
(
exp

(
ei3π/4(x− 1)1/4

))

has the desired moment properties. It also has much faster decay than the example given

by Stieltjes, since

|k(x)| ≤ C exp

(−(r − 1)1/4√
2

)
(4.9)
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It is perhaps worth commenting on the fact that the above function may be transferred

to a radial line from the origin inRn and will retain the same moment properties. This not

only leads easily to the construction of a similar function supported on a cone with vertex at

the origin, but also leads us naturally to wonder whether the elaborate geometric conditions

required in Theorem 4.0.3 are truly necessary. With the information we have available thus

far there seems reason to hope we might construct the desired functions simply on curves

in Rn. The following elementary example shows this is not the case.

ConsiderR2 with co-ordinates (x, y) and the line segmentγ given byy = 1, x ∈ [1,∞).

This is as trivial a modification of a radial line as we might imagine, yet if we seekK(x, y)

onγ with the moment condition (4.2) we are doomed immediately, because we have asked

for both ∫

γ

K(x, y) = 1 and
∫

γ

yK(x, y) = 0

which is incompatible withy = 1 onγ. A slight modification in which we ask thatK(x, y)

be supported on the set|y − 1| < ε, x ∈ [1,∞) looks to be close to extremal, in that we

might expect the size ofK(x, y) to be in inverse proportion toε. Such a set would be

much smaller than the setΓ of Theorem 4.0.3, so this further suggests the conclusions of

that theorem are not sharp. This is indeed the case, and it is even possible to refine the

conclusion of the theorem using only the techniques we will develop during the rest of this

chapter. Such sharper results do not, however, improve our understanding of the original

Sobolev extension problem, so they are not included here.

Building a kernel satisfying (4.1) will occupy the remainder of this chapter. With only

the geometric information in (4.1) it is a far more technical task than the construction on

[1,∞). In particular none of the methods from complex variables appear to be helpful in

this situation. It should be apparent from the difficulties we encountered onγ, which was

simply a translation of our well-behaved radial line, that neither the classical integration
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tricks nor conformal mappings are compatible with our geometric constraints. Neither are

the many techniques for moment problems in higher dimensions applicable on the sets we

consider. For this reason our approach to proving Lemma 4.0.4 begins by re-visiting the

one-dimensional case we have just discussed, this time with the goal of constructing the

functionk(x) in a manner that allows us to break upΓ into distinct intervals in the radial

direction. Using this we will proceed in Section 4.3 to deal with the angular variables on

sets of the form described in (4.5). These will combine naturally to give the construction

of the desired kernel in Section 4.4.

4.2 Moments on[1,∞)

We work on the half-lineI = [1,∞) ⊂ R. Let {r j}∞j=0 be an increasing sequence of points

from I . We consider [r0,∞) ⊂ I to be partitioned into the intervalsI j = [r j , r j+1). Our first

goal is to construct smooth functionsψ j which have a finite number of vanishing moments

and which are supported on the intervalsI j. From the functionsψ j we will then inductively

construct a functionΨ satisfying (4.2). This will require knowing estimates for the higher

order moments of theψ j.

Some Building Blocks

Consider for eachj ∈ N, j , 0 the function

χ j(s) =



C j exp
( j
s2 − 1

)
s ∈ (−1,1)

0 otherwise

whereC j is chosen so that
∫
χ j = 1. For j = 0 setψ0 = ψ1. It is clear that these functions

are C∞ on the real line and are supported on [−1,1]. We note for future reference an
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elementary estimate onC j. Observe that our functions decay monotonically as we move

away from the origin and therefore that

∫
exp

( j
s2 − 1

)
ds≥

∫ 1
2

−1
2

exp
( j
s2 − 1

)
ds

≥ exp

(−4 j
3

)

whereuponC j ≤ e4 j/3.

We useφ j to denote the function obtained by translating and scalingχ j to the interval

I j such thatφ j is C∞, supported onI j and has
∫
φ j = 1.

φ j(r) =
2

(r j+1 − r j)
χ j

(
2r

r j+1 − r j
− r j+1 + r j

r j+1 − r j

)
(4.10)

Now we make our main definition for this section. Thej-th building block function,

supported on the intervalI j, is

ψ j(r) =
(−1)j

j!

(
∂

∂r

) j

φ j(r) (4.11)

This definition is related to the classical Rodrigues formula for the Legendre polynomials.

As in the theory of orthogonal polynomials, its practical application comes from the ease

with which we may calculate the momentsµ j,k of ψ j using integration by parts. In the

following computation we differentiaterk and integrateψ j(r) as many asj times, noticing

that at each stage the boundary terms vanish because they are multiples of derivatives ofφ j

at the endpoints ofI j.

µ j,k B
∫

I
rkψ j(r) dr

= (−1)j 1
j!

∫

I j

rk

(
∂

∂r

) j

φ j(r) dr
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= (−1)j−1 k
j!

∫

I j

rk−1

(
∂

∂r

) j−1

φ j(r) dr

= (−1)j−2k(k− 1)
j!

∫

I j

rk−2

(
∂

∂r

) j−2

φ j(r) dr

...

=



0 if k < j

1 if k = j
(
k
j

) ∫

I j

rk− jφ j(r) dr if k > j

(4.12)

At times it will be useful to change variables back to the interval [−1,1], in which case we

have the expressions

µ j,k =



0 if k < j

1 if k = j
(
k
j

) (r j+1 − r j

2

)k− j ∫ 1

−1

(
s+

r j+1 + r j

r j+1 − r j

)k− j

χ j(s) ds if k > j

(4.13)

for the moments ofψ j. We also record from (4.12) that

|µ j,k| ≤
(
k
j

)
rk− j

j+1 (4.14)

Bounds for the building blocks

As our construction will involve adding and subtracting multiples of the functionsψ j it will

be important that we know how theL∞ norm ofψ j depends onj.
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Lemma 4.2.1.The functionsψ j satisfy

|ψ j(r)| ≤
(

20
r j+1 − r j

) j+1

(4.15)

Proof. Inserting the definition (4.10) into (4.11) and noting that the change of variables is

linear we have

ψ j(r) =
(−1) j

j!
2

(r j+1 − r j)

(
d
dr

) j

χ j

(
2r

r j+1 − r j
− r j+1 + r j

r j+1 − r j

)

=
(−1) j

j!

(
2

(r j+1 − r j)

) j+1 (
d
ds

) j

χ j(s) (4.16)

and we see that it suffices to know a bound for thej-th derivative ofχ j.

Rewriting the definition ofχ j(s) as

χ j(s) = C j exp
( j
s2 − 1

)
= C j exp

(
j

2(s− 1)

)
exp

( − j
2(s+ 1)

)
(4.17)

we may proceed by differentiating the product to obtain

C−1
j

(
d
ds

) j

χ j(s) =

j∑

k=0

(
j
k

)
·
(

d
ds

)k

exp

(
j

2(s− 1)

)
·
(

d
ds

) j−k

exp

( − j
2(s+ 1)

)

It is elementary but tedious to obtain bounds for these derivatives. Consider the terms that

arise when we expand using the Leibnitz rule

(
d
ds

)k

exp

(
j

2(s− 1)

)
=

(
d
ds

)k−1( − j
2(s− 1)2

)
exp

(
j

2(s− 1)

)

= · · ·

It is clear that at all stages of the computation, the terms in the expression to be differenti-
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ated are products involving (s− 1)−l exp(j/2(s− 1)). We compute

d
ds

[
1

(s− 1)l
exp

(
j

2(s− 1)

)]
=

−l
(s− 1)l+1

exp

(
j

2(s− 1)

)
+

− j
2(s− 1)l+2

exp

(
j

2(s− 1)

)

Grouping such terms according to the homogeneityl we notice that the derivative of a

term with homogeneityl consists of a term of homogeneityl + 1 with a factor−l and one

of homogeneityl + 2 with a factor− j/2. This allows us to describe all terms that arise

in computing thek-th derivative. There are a total of 2k−1 terms, naturally grouped by

homogeneity. Indeed, the homogeneity of a term depends on the pattern of differentiations

that produced it. Ifl of these fell on the powers of (s− 1) and (k − l) on the exponential

factor, then by the above observation the resulting term has homogeneity 2(k− l)+ l = 2k− l.

There are

(
k− 1

l

)
terms of this homogeneity and it is easy to deduce that the coefficients of

each contain a factor of (− j/2)k−l from differentiation of the exponentials. The coefficients

obtained by differentiating the powers are harder to write down precisely, but it is easy to

see that none is as large as (2k)l.

Now we need to estimate the size of a term with fixed homogeneity. As there is a trivial

estimate on [−1,0] we look for the maximum on [0,1). Observe that for a positive value of

2k− l

log

∣∣∣∣∣∣
1

(s− 1)2k−l
exp

(
j

2(s− 1)

)∣∣∣∣∣∣ = −(2k− l) log(1− s) +
j

2(s− 1)

d
ds

log

∣∣∣∣∣∣
1

(s− 1)2k−l
exp

(
j

2(s− 1)

)∣∣∣∣∣∣ =
(2k− l)
(1− s)

− j
2(s− 1)2

so that this expression has a unique critical point in [0,1) at j/2(s− 1) = −(2k − l). It
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follows that we have the bound

∣∣∣∣∣∣
1

(s− 1)2k−l
exp

(
j

2(s− 1)

)∣∣∣∣∣∣ ≤



(
2(2k− l)

je

)2k−l

if 2(2k− l) ≥ j

e− j/2 if 2(2k− l) < j

(4.18)

where these maxima occur at the critical point and at 0 respectively.

Combining the above estimates we have bounds of the type needed in (4.17) on the

interval [0,1]. It is an unfortunate consequence of the dichotomy in (4.18) that our bounds

are different for different ranges ofk. The simplest is that fork < j/4 where the second

estimate in (4.18) must be used and we have

∣∣∣∣∣∣∣

(
d
ds

)k

exp

(
j

2(s− 1)

)∣∣∣∣∣∣∣ ≤ e− j/2
k−1∑

l=0

(
k− 1

l

)
(2k)l

( j
2

)k−l

≤ e− j/2
(
2k +

j
2

)k

≤ e− j/2 jk

For the situation in whichk ≥ j/2− 1 we have 2k− j/2 ≥ k− 1 ≥ l and therefore the first

estimate in (4.18) is used. This gives

∣∣∣∣∣∣∣

(
d
ds

)k

exp

(
j

2(s− 1)

)∣∣∣∣∣∣∣ ≤
k−1∑

l=0

(
k− 1

l

)
(2k)l

( j
2

)k−l (2(2k− l)
je

)2k−l

≤
(
4k
je

)k k−1∑

l=0

(
k− 1

l

)
(2k)l

( j
2

)k−l (4k
je

)k−l

=

(
4k
je

)k k−1∑

l=0

(
k− 1

l

)
(2k)l

(
2k
e

)k−l

≤
(
4k
je

)k (e+ 1
e

)k

(2k)k

≤ Ck

(
k2

j

)k
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Finally there is the casej/4 ≤ k < j/2− 1 which appears at first sight to require a combi-

nation of these estimates, but for which we merely use both of the above

∣∣∣∣∣∣∣

(
d
ds

)k

exp

(
j

2(s− 1)

)∣∣∣∣∣∣∣ ≤
(
4k
je

)k 2k− j/2∑

l=0

(
k− 1

l

)
(2k)l

(
2k
e

)k−l

+ e− j/2
k−1∑

l=2k− j/2

(
k− 1

l

)
(2k)l

( j
2

)k−l

≤ Ck

(
k2

j

)k

+ e− j/2 jk

This final estimate is then valid for allk.

In order to finish estimating (4.17) we need to know something about the behavior of

the terms involving (s + 1) rather than (s− 1). These, however are easy. The pattern of

differentiation is the same as for the (s− 1) terms, but on [0,1] all the resulting terms are

bounded bye− j/2 because negative powers of (s+1) are trivially bounded by 1. We conclude

by the same method as above that

∣∣∣∣∣∣∣

(
d
ds

) j−k

exp

(
j

2(s+ 1)

)∣∣∣∣∣∣∣ ≤ e− j/2 j(k− j)

and can finally put all of our calculations together to conclude that

C−1
j

∣∣∣∣∣∣
(

d
ds

) j

χ j(s)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

j∑

k=0

(
j
k

)
·
(

d
ds

)k

exp

(
j

2(s− 1)

)
·
(

d
ds

) j−k

exp

( − j
2(s+ 1)

)∣∣∣∣∣∣∣

≤
j∑

k=0

(
j
k

)
e− j/2 j(k− j)Ck

(
k2

j

)k

+

j∑

k=0

(
j
k

)
e− j j j

≤ j je− j/2


j∑

k=0

(
j
k

)
Ck

(
k
j

)2k

j2(k− j)

 + 2je− j j j

≤ j je− j/2


j∑

k=0

(
j
k

)
Ck j2(k− j)

 + 2je− j j j
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≤ j je− j/2
(
C + j−2

) j
+ 2je− j j j

≤ j je− j
(
ej/2(C + 1)j + 2j

)

Substituting into (4.16) and using Stirling’s formula to estimatej! ≥ j je− j
√

2π j we

have at last

|ψ j(r)| ≤
C j j je− j

j je− j
√

2π j

(
ej/2(C + 1)j + 2j

) ( 2
(r j+1 − r j)

) j+1

≤
(

c
r j+1 − r j

) j+1

where we used the estimateC j ≤ e4 j/3. It is easily verified that we can takec = 20. This

proves the lemma. �

Construction

Our goal is to construct a function on [1,∞) that has all its moments vanish except the one

of zeroth order. A natural method to attempt is to begin withψ0 and inductively subtract

constant multiples of the functionsψ j for j ≥ 1 so as to cancel each moment in turn. The

induction is as follows

• The function before thej-th stage of the induction is calledΨ j. We setΨ0 = ψ0.

• The moments ofΨ j areaj
k =

∫
I
rkΨ j(r) dr. It is then clear thata0

k = µ0,k.

• The j-th stage of the induction is

Ψ j+1 = Ψ j − aj
j+1ψ j+1
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from which it is clear that the moments ofΨ j+1 are given by

aj+1
k = aj

k − aj
j+1µ j+1,k (4.19)

Observe thataj+1
j+1 = 0 becauseµ j+1, j+1 = 1. Sinceµl, j+1 = 0 for all l > j + 1 it follows that

(4.19) is actually

aj+1
k =



1 if k = 0

0 if 1 ≤ k ≤ j + 1

a j
k − a j

j+1µ j+1,k if k > j + 1

as was intended. Eachψ j is supported on the intervalI j and these intervals are disjoint, so

it is apparent that to prove theΨ j(r) converge all we need do is estimate the numbersa j
j+1

and use our estimates on the functionsψ j. For this purpose we define a sequence{bj
k} by

settingb0
k = |a0

k| = |µ0,k| and

bj+1
k = bj

k + bj
j+1|µ j+1,k| (4.20)

It is clear that|a0
k| ≤ b0

k for all k. Assuming inductively that|aj
k| ≤ bj

k we have

|aj+1
k | ≤ |aj

k| + |aj, j+1|µ j+1,k

≤ bj
k + bj

j+1µ j+1,k

= bj+1
k (4.21)

and henceforth need only consider the sequence{bj
j+1}.

Estimates

The essential idea is that binomial factor in theµ j,k causes terms to increase very rapidly as

j andk increase (withk > j). This implies that at any stage of the induction the dominant
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terms will be from the moments of the most recently introducedψ j. We do not show this

explicitly because the only estimates we need are those for the numbersbj
j+1, however it is

the underlying philosophy of what follows here.

Lemma 4.2.2.For j ≥ 1 andk ≥ j, the momentsµ j,k satisfy

µ j−1,k

µ j−1, jµ j,k
≤ 2

k− j + 1
(4.22)

Proof. We may explicitly compute the termµ j−1, j to be

µ j−1, j =

(
j

j − 1

) ( r j − r j−1

2

) ∫ 1

−1

(
s+

r j + r j−1

r j − r j−1

)
χ j−1(s) ds

= j
( r j − r j−1

2

) ( r j + r j−1

r j − r j−1

)

using the fact thatχ j−1(s) is an even function on [−1,1].

Using the symmetry ofφ j(r) around the midpoint ofI j and the fact thatrk− j is an

increasing function we have the bound

µ j,k =

(
k
j

) ∫

I j

rk− jφ j(r) dr

≥
(
k
j

) ( r j+1 + r j

2

)k− j

and we make a similarly trivial estimate onµ j−1,k using the upper endpoint of the interval:

µ j−1,k =

(
k

j − 1

) ∫

I j−1

rk− j+1φ j−1(r) dr

≤
(

k
j − 1

)
rk− j+1

j
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Combining these we have

µ j−1,k

µ j−1, jµ j,k
≤

(
k

j − 1

)
rk− j+1

j

j

(
k
j

) (r j + r j−1

2

) ( r j+1 + r j

2

)k− j

=
1

k− j + 1

(
2r j

r j + r j−1

) (
2r j

r j+1 + r j

)k− j

≤ 2
k− j + 1

�

Lemma 4.2.3.The sequencebj
j+1 satisfies

bj
j+1 ≤ e2bj−1

j |µ j, j+1|

and hence

bj
j+1 ≤ e2 j

j∏

l=0

|µl,l+1| (4.23)

Proof. We expandbj+1
k using only its definition in (4.20)

bj+1
k = bj

k + bj
j+1|µ j+1,k|

= bj−1
k + bj−1

j |µ j,k| + bj
j+1|µ j+1,k|

...

= b0
k + b0

1|µ1,k| + b1
2|µ2,k| + · · · + bj

j+1|µ j+1,k| (4.24)

= |µ0,k| + b0
1|µ1,k| + b1

2|µ2,k| + · · · + bj
j+1|µ j+1,k| (4.25)

and see that we must deal with a sum of terms of the typebl−1
l |µl,k|. Again from the definition
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in (4.20) we have

bl−1
l |µl,l+1| = bl

l+1 − bl−1
l+1 ≤ bl

l+1

and using this in conjunction with the inequality (4.22) from the preceding lemma we

obtain forl ≥ 1

bl−1
l |µl,k| ≤ bl−1

l |µl,l+1||µl+1,k|
(

2
k− l

)

≤ bl
l+1|µl+1,k|

(
2

k− l

)

... inductively

≤ b j
j+1|µ j+1,k|

(
2j−l+1

(k− l)(k− l − 1) · · · (k− j)

)

while for the first term in the sum (4.24) we begin directly with the estimate (4.22) and are

then in the same case as before

|µ0,k| ≤
(
2
k

)
|µ0,1||µ1,k|

=

(
2
k

)
b0

1|µ1,k|

≤ bj
j+1|µ j+1,k|

(
2j+1

k(k− 1) · · · (k− j)

)

Now we need only substitute into the sum (4.24) to find (withm = j − l)

bj+1
k ≤ bj

j+1|µ j+1,k|
1 +

j∑

m=0

2m+1(k− j − 1)!
(k− j + m)!
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and in particular

bj+1
j+2 ≤ b j

j+1|µ j+1, j+2|
1 +

j∑

m=0

2m+1

(m+ 2)!



≤ bj
j+1|µ j+1, j+2|

1 +
1
2

j+2∑

p=1

2p

p!



≤ e2 + 1
2

bj
j+1|µ j+1, j+2|

which proves the first assertion of the lemma. The second follows from this inductively:

bj
j+1 ≤ e2bj−1

j |µ j, j+1|

≤ e4bj−2
j−1|µ j−1, j ||µ j, j+1|

...

≤ e2 jb0
1|µ1,2||µ2,3| · · · |µ j, j+1|

= e2 j
j∏

l=0

|µl,l+1|

where the last step uses thatb0
1 = |µ0,1| by definition. �

Properties ofΨ(r) = lim Ψ j(r)

Recall that the functionsΨ j(r) were defined inductively by

Ψ0(r) = ψ0(r) Ψ j+1(r) = Ψ j(r) − a j
j+1ψ j+1(r) (4.26)

The functionsψ j(r) are defined on the disjoint intervalsI j, so it is immediate that theΨ j(r)

converge pointwise to a functionΨ(r) on I . We wish to know that this limit function decays

sufficiently fast that it is integrable against all polynomials, and to know that its moments
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are those obtained as the limits of the moments of theΨ j(r). To this end we employ our

estimates for the functionsψ j+1 and for their coefficientsaj
j+1. By (4.21) and (4.23) we have

|aj
j+1| ≤ bj

j+1 ≤ e2 j
j∏

l=0

|µl,l+1|

however from (4.14) we know already that

|µl,l+1| ≤ (l + 1)r l

and so

|aj
j+1| ≤ e2 j( j + 1)!

j∏

l=0

r l

Multiplying this byψ j+1, a bound for which we found in (4.15), we have

|aj
j+1| |ψ j+1| ≤ e2 j( j + 1)!


j∏

l=0

r l


(

20
(r j+2 − r j+1)

) j+2

(4.27)

and we see that this depends on our choice of the sequence{r j}.
It is not hard to discover that the rate of growth of the sequence{r j} determines the

bounds available from (4.27). A close to optimal choice ofr j is the sequence described in

Lemma 4.0.4

r j = T exp
[
2 log2( j + j0)

]
(4.28)

for which case we record an estimate that is useful both here and in Section 4.4.
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Lemma 4.2.4.With {r j} as in(4.28)and j0 ≥ 8 we have

j!


j−1∏

l=0

r l


(

20
(r j+1 − r j)

) j+1

(4.29)

≤ exp
(
C + 2 j0 log2( j + j0) − 2( j + j0) log( j + j0)

)
(4.30)

Proof. For notational purposes it will be convenient for us to work with the logarithm of

the above quantity. The relevant estimates are

r j+1 − r j = T
(
exp

(
2 log2( j + j0 + 1)

) − exp
(
2 log2( j + j0)

))

= T
(
exp

(
2 log2( j + j0)

)) (
exp

(
2 log2( j + j0 + 1)− 2 log2( j + j0)

))

≥ T
(
exp

(
2 log2( j + j0)

)) (
2 log2( j + j0 + 1)− 2 log2( j + j0)

)

so that

log
(
r j+1 − r j

) ≥ logT + 2 log2( j + j0) + log 2

+ log

[(
log( j + j0 + 1)( j + j0)

) (
log

(
1 +

1
j + j0

))]

≥ logT + 2 log2( j + j0) + log 2+ log
(
2 log(j + j0)

)

+ log log

(
1 +

1
j + j0

)

≥ logT + 2 log2( j + j0) + log 4+ log log(j + j0)

+ log

(
log 2
j + j0

)

≥ logT + 2 log2( j + j0) + log log(j + j0) + log
(
4 log 2

)

− log( j + j0) (4.31)
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and for the product term

j−1∑

0

log r l = j logT + 2
j−1∑

0

log2(l + j0)

≤ j logT + 2
∫ j+ j0

j0

log2 x dx

= j logT + 2( j + j0) log2( j + j0) − 4( j + j0) log( j + j0)

+ 4( j + j0) − 2 j0 log2 j0 + 4 j0 log j0 − 4 j0 (4.32)

Combining (4.31), (4.32), and the Stirling Estimatej! ≤ c
√

j j je− j produces

log

 j!


j−1∏

l=0

r l


(

20
(r j+1 − r j)

) j+1


≤ logc− j + ( j + 1/2) log j + j logT + 2( j + j0) log2( j + j0)

− 4( j + j0) log( j + j0) + 4 j − 2 j0 log2 j0 + 4 j0 log j0

− ( j + 1) logT − 2( j + 1) log2( j + j0) − ( j + 1) log log(j + j0)

− ( j + 1) log
(
4 log 2

)
+ ( j + 1) log(j + j0)

≤ logc + 2 j0 log2( j + j0) − 2( j + j0) log( j + j0)

becausej0 ≥ 8 ≥ e2. Inserting the constantc for the Stirling estimate we obtain the

conclusion of the lemma withC = log
(√

2πe
)
. �

The lemma applies directly to (4.27) to give

log
(|aj−1

j | |ψ j |) ≤ 2 j + 2 j0 log2( j + j0) − 2( j + j0) log( j + j0)

≤ −( j + j0 + 1) log(j + j0 + 1)

for all sufficiently large j. By (4.26) and the fact that only the only non-zeroψl on I j is ψ j,
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this is a bound for|Ψ(r)| on the intervalI j = [r j , r j+1). Using logr ≤ logT +2 log2( j+ j0+1)

on this interval we see that

log( j + j0 + 1) ≥
(
1
2

log
r
T

)1/2

which gives us at last that for all sufficiently large values ofr

log |Ψ(r)| ≤ −
(
1
2

log
r
T

)1/2

exp

(
1
2

log
r
T

)1/2

(4.33)

This is certainly sufficiently rapid decay to ensure integrability against the polynomials,

and an application of the dominated convergence theorem shows

∫
rkΨ(r) dr = lim

j→∞

∫
rkΨ(r) dr =



1 if k = 0

0 if k = 1,2,3, . . .

(4.34)

so that we have found a function of the desired type on [0,∞). Our construction is cruder

than the complex variable method used by Stein, so it is not surprising that we have paid

a price in the decay rate ofΨ(r). We saw already in (4.9) that the method he used gives a

decay rate like

log |K(r)| ≤ −(r − 1)1/4√
2

≤ −C exp

(
1
4

log r

)
(4.35)

which is clearly better than (4.33). In compensation we have gained substantial control

over the regions in which cancellation occurs for individual monomials.
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4.3 Kernels on Subsets of Spheres

In addition to our collection of kernels selecting for the radial growthr j, we need func-

tions that can distinguish between the many monomials that have this rate of growth. For

example inR2 we need to be able to treatx2, xy andy2 independently, yet all have the ra-

dial behaviorr2. We achieve this by constructing functions on a fixed subset of the sphere

Sn−1 ⊂ Rn with the property that they vanish for all monomials except the specific one

desired. It will be convenient in our construction to work with angular variables rather

than the restrictions of monomials toSn−1, so all our results are stated with regard to these

variables. We see in Section 4.4 that this is sufficient for our problem.

The construction will be carried out first for an arcΘ on the unit circle. It will then be

a simple matter to extend to the case of a subsetΞ ⊂ Sn−1.

Functions on an Arc ofS1

Lemma 4.3.1.LetΘ be an arc of length|Θ| in the unit circleS1. For a fixedJ ∈ N and for

eachl ∈ Z with |l| < J there is a smooth functionGl(θ) with support inΘ such that

∫

S1
Gl(θ)e

ikθ dθ =



1 if k = l

0 if |k| ≤ J andk , l

(4.36)

and which satifies the estimate

|Gl(θ)| ≤
(

C
|Θ|

)2J+2

(4.37)

Proof. The Riesz representation theorem guarantees that there is aGl(θ) which is itself a

trigonometric polynomial of degreeJ, hence it is reasonable to begin by solving a dis-

cretized version of the problem which constructsGl at 2J + 1 points. This will lead easily

to a construction ofGl(θ). To simplify notation we begin with the casel = 0; the general
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case will be seen to be similar.

We partitionΘ by the points{λ0, . . . , λ2J} whereλ0 is distance|Θ|/(4J + 2) from one

endpoint ofΘ andλ j+1−λ j = |Θ|/(2J+1). The discretized problem is then to find numbers

aj such that

2J∑

j=0

aje
ikλ j =



1 if k = 0

0 if 1 ≤ |k| ≤ J

(4.38)

Observe that the right side of this equation has a familiar interpretation from the calculus

of residues which we record as

1
2π

∫ 2π

0
eikθ dθ =



1 if k = 0

0 if k , 1

(4.39)

We use Lagrange interpolation to express the integrandeikθ in terms of the pointsλ j. Writ-

ing zj = eiλ j we define

Pj(z) =

2J∏

k=0,k, j

z− zk

zj − zk

The fact that a polynomialQ(z) of degree at most 2J is determined by its values at 2J + 1

points allows us to write

Q(z) =

2J∑

j=0

Q(zj)Pj(z)

In order to apply this to our integrand we setQ(z) = zJeikθ, which for |k| ≤ J coincides with

a polynomial of the appropriate degree on the unit circle, where we conclude

eikθ =
Q(z)
zJ

=
1
zJ

2J∑

j=0

Q(zj)Pj(z)

= e−Jθ
2J∑

j=0

ei(J+k)λ j Pj(e
iθ)
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Now integrating both sides overθ ∈ [0,2π] yields as in (4.39)

2J∑

j=0

ei(J+k)λ j

(
1
2π

∫ 2π

0
Pj(e

iθ)e−Jθ dθ

)
=



1 if k = 0

0 if 1 ≤ |k| ≤ J

whence comparison with (4.38) yields an explicit formula for the valuesaj

aj =
eiJλ j

2π

∫ 2π

0
Pj(e

iθ)e−Jθ dθ (4.40)

Using the above solution to the discretized problem we may prove the lemma by trans-

lating the set of pointsλ j within the intervalΘ and integrating the resulting functions

against a smooth cutoff. By our choice ofλ j, the pointsei(λ j+φ) are all in Θ for φ ∈
[−|Θ|/(4J + 2), |Θ|/(4J + 2)

)
. Moreover all points ofΘ (except one endpoint) may be

uniquely described aseiλ j+φ for someφ in this interval. Using the procedure described

above, but replacing the partition{λ j} by the translates{λ j + φ}, we obtain for eachφ ∈
[−|Θ|/(4J + 2), |Θ|/(4J + 2)

)
a set of numbersaj(φ) such that

2J∑

j=0

aj(φ)ei(λ j+φ)k =



1 if k = 0

0 if 1 ≤ |k| ≤ J

If we now take aC∞ functionη(φ) supported on the interval
[−|Θ|/(4J + 2), |Θ|/(4J + 2)

]

and such that
∫
η = 1 we find that

2J∑

j=0

∫ |Θ|/(4J+2)

−|Θ|/(4J+2)
aj(φ)ei(λ j+φ)kη(φ) dφ =



1 if k = 0

0 if 1 ≤ |k| ≤ J

(4.41)

This gives a natural definition of our functionG(θ). Writeθ ∈ Θ in its unique formθ = λ j+φ
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as decribed above and set

G(θ) = a j(φ)η(φ) (4.42)

It then follows from (4.41) that

∫

Θ

G(θ)eikθ dθ =

2J∑

j=0

∫ λ j+|Θ|/(4J+2)

λ j−|Θ|/(4J+2)
G(θ)eikθ dθ

=

2J∑

j=0

∫ |Θ|/(4J+2)

−|Θ|/(4J+2)
aj(φ)η(φ)ei(λ j+φ)k dφ

=



1 if k = 0

0 if 1 ≤ |k| ≤ J

We now have a functionG(θ) which satisfies (4.36) for the casel = 0. As earlier

mentioned, the construction is not substantially different for generall. We merely replace

(4.39) with

1
2π

∫ 2π

0
eikθ e−ilθdθ =



1 if k = l

0 if k , l

and in later instances of integration with respect todθ we instead usee−ilθdθ. In order

to simplify the derivation of the estimate (4.37) we record the precise definition ofG j(θ).

First note that when we construct the Lagrange interpolating polynomials for the partition

{λ j + φ} we obtain

Pj,φ(z) =

2J∏

k=0,k, j

z− eiφzk

eiφzj − eiφzk

= Pj(e
−iφz)
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Now we have from (4.40) that

aj(φ) =
eiJ(λ j+φ)

2π

∫ 2π

0
Pj(e

i(θ−φ))e−(J+l)θ dθ

and therefore

Gl(θ) =
eiJ(λ j+φ)

2π

∫ 2π

0
Pj(e

i(θ−φ))e−(J+l)θ dθ η(φ) (4.43)

whence

|Gl(θ)| ≤ ‖η(φ)‖L∞
2π

∫ 2π

0
|Pj(e

iλ)|dλ (4.44)

Sinceη(φ) is simply a smooth cutoff function on the interval
[−|Θ|/(4J + 2), |Θ|/(4J + 2)

]

it is easily seen that|η(φ)| ≤ C(2J + 1)/|Θ| and we are reduced to estimatingPj. This too is

simple, because the all of the terms in its numerator are bounded individually by 2 forzon

the unit circle and the denominator is clearly largest for the casej = J + 1 when

2J∏

k=0,k, j

(zj − zk) =

( |Θ|
4J + 2

)2J+1

12 · 22 · 32 · · · J2

=

( |Θ|
4J + 2

)2J+1

(J!)2

≥
( |Θ|
4J + 2

)2J+1

2πJ2J+1e−2J

≥ 2πe

( |Θ|
6e

)2J+1

where we used thatJ! >
√

2πJJJe−J andJ/(2J + 1) ≥ 1/3. From these and (4.44)

|Gl(θ)| ≤ C(2J + 1)
4π2e|Θ|

(
12e
|Θ|

)2J+1

≤
(

C
|Θ|

)2J+2
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thus establishing (4.37)

It remains only to see thatGl(θ) is smooth, however we have the formula (4.43) which

givesGl(θ) explicitly as a product of smooth functions on the intervals
(
λ j − |Θ|/(4J +

2), λ j + |Θ|/(4J + 2)
)
. At the points where two of these intervals meet we see thatη(φ) and

all its derivatives are zero, therefore the same is true ofGl(θ).

�

Functions on a subset ofSn−1

Consider the unit sphereSn−1 ⊂ Rn. We use the notationξ ∈ Sn−1 for pointsξ = (ξ1, . . . , ξn)

with
∑
ξ2

j = 1, anddσ for the usual (n − 1) dimensional measure normalized to have

unit mass onSn−1. We also define generalized spherical coordinatesθ1, θ2, . . . , θn−1 where

θ j ∈ [0, π] for all j < n− 1 andθn−1 ∈ [0,2π) according to the pattern:

ξ j =



cosθ1 if j = 1

cosθ j
∏ j−1

k=1 sinθk if 1 < j < n

∏n−1
k=1 sinθk if j = n

(4.45)

and will move freely between the notationξ and (θ1, . . . , θn−1) for points ofSn−1. Note that

the Jacobian on the sphere isJ =
∏n−2

k=1 sinn−k−1 θk.

A subsetΞ ⊂ Sn−1 is called anangular cubeif it is of the form

Ξ = {(θ1, . . . , θn−1) : θ j ∈ Θ j}

where eachΘ j ⊂ S1 is an arc of length|Θ|. We call|Θ| the angular length of the cubeΞ.

Lemma 4.3.2.Let Ξ be a an angular rectangle of angular length|Θ| and such that|J| ≥
C−1

Ξ
on Ξ. For a fixedJ ∈ N let α = (α1, . . . , αn) satisfy|α j | ≤ J for all j. Then there is a
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smooth functionHα supported on the setΞ with

∫

Sn−1
Hα(ξ) exp

i
n−1∑

j=1

β jθ j

 dσ(ξ) =



1 if β = α

0 if |β j | ≤ J for all j andβ , α

and such thatHα satisfies the estimate

|Hα| ≤ CΞ

(
C
Θ|

)2(n−1)(J+1)

(4.46)

Proof. We use Lemma 4.3.1 to define functionsGα j (θ) supported onΘ j and having

∫
Gα j (θ)e

ikθ dθ =



1 if k = α j

0 if |k| ≤ J andk , α j

(4.47)

For eachj we may use (4.37) to obtain

|Gα j | ≤
(

C
|Θ j |

)2(J+1)

(4.48)

Define

Hα =
1
J

n−1∏

j=1

Gα j (θ j)

By applying (4.47) we see that

∫

Sn−1
Hα(ξ) exp

i
n−1∑

j=1

β jθ j

 dσ(ξ)

=

∫

Sn−1


n−1∏

j=1

Gα j (θ j)




n∏

j=1

eiα jθ j

 dθ1 · · · dθn−1

=

n−1∏

j=1

∫ π

0
Gα j (θ j)e

iα jθ j dθ j
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=



1 if α = β

0 if someβ j ≤ J andα , β

and we can estimate the size ofHα on Ξ using the assumption|J| ≥ C−1
Ξ

and (4.48) to

obtain

|Hα(ξ)| ≤ 1
J

n−1∏

j=1

(
C
|Θ|

)2(J+1)

≤ CΞ

(
C
Θ|

)2(n−1)(J+1)

�

Our construction on an angular cube is useful because the intersection of a twisting

cone as in 3.3 with a sphere around the origin contains an angular cube of some fixed size.

This, and the verification that we can avoid locations whereJ is large, is the content of

Lemma 4.3.3.

Lemma 4.3.3. If υ ∈ Sn−1 andt < 1 then the setSn−1 ∩ B(υ, t) contains an angular cube

with angular length|Θ| ≤ C1t and on which|J| ≥ C2tn−2. The constantsC1 andC2 depend

only upon the dimensionn.

Proof. We verify the assertion aboutJ by showing that there is a constantλ such that

B(υ, t) contains a ballB(υ̃, λt) centered at ˜υ ∈ Sn−1 and on whichJ is appropriately

bounded. Observe that such a bound holds on the set

{ξ = (ξ1, . . . , ξn) ∈ Sn−1 : ξ2
n−1 + ξ2

n ≥ (λt)2}
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because we have

|J| =
n−2∏

k=1

| sinθk|n−k−1 ≥


n−2∏

k=1

| sinθk|


n−2

=
(
ξ2

n−1 + ξ2
n

)(n−2)/2

so that|J| ≥ (λt)n−2.

We may restrict to the caseυ ∈ {ξ2
n−1 + ξ2

n ≤ (2λt)2}, as otherwise the ballB(υ, λt) has

the advertised property. Let ˜υ be the point ofSn−1∩ {ξ2
n−1 + ξ2

n = (2λt)2} that is closest toυ.

We claim|υ− υ̃| ≤ 2
√

2λt. To see this writeυ = (υ1, . . . , υn) and verify that the set contains

the pointτ defined by

τ j =

(
1− (2λt)2

1− υ2
n−1 − υ2

n

)1/2

υ j for j = 1, . . . , n− 2

(τn−1, τn) =



2λt
(
υ2

n−1 + υ2
n

)1/2
(υn−1, υn) if υ2

n−1 + υ2
n , 0

(2λt,0) if υ2
n−1 + υ2

n = 0

Providingυ2
n−1 + υ2

n , 0 we have a bound

|υ − τ|2 =

n∑

j=1

|υ j − τ j |2

=

1−
2λt

(
υ2

n−1 + υ2
n

)1/2


2 (
υ2

n−1 + υ2
n

)
+

1−
(

1− (2λt)2

1− υ2
n−1 − υ2

n

)1/2
2 n−2∑

j=1

υ2
j

≤ (2λt)2 + (2λt)2
n−2∑

j=1

υ2
j

≤ 2(2λt)2

where we used

(
1− (2λt)2

1− υ2
n−1 − υ2

n

)1/2

≥ (
1− (2λt)2)1/2 ≥ 1− 2λt for 2λt ≤ 1 (4.49)
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The same estimate for|υ− τ| is even easier in the caseυ2
n−1 + υ2

n = 0, so the claim is proven

providing 2λt < 1.

We now need only observe from|υ − υ̃| ≤ 2
√

2λt and the definition of ˜υ that

B(υ̃, (1− 2
√

2λ)t) ⊂ B(υ, t)

B(υ̃, λt) ⊂ {ξ = (ξ1, . . . , ξn) : ξ2
n−1 + ξ2

n ≥ (λt)2}

Setting (1− 2
√

2λ) = λ, i.e. λ = 1/(1 + 2
√

2), we see that 2λt < 1 so (4.49) is valid, and

that the ballB(υ̃, λt) has all the properties we desired.

By the above argument it suffices to assume the ballB(υ, t) satisfies the bound on|J|
and to see that it contains an angular cube. However it is clear from (4.45) that at any point

(θ1, . . . , θn−1) on the sphere, changingθ j by an amountφ moves the point by Euclidean

distance less than|φ|. In particular ifυ = (θ1, . . . , θn−1) then

{
(φ1, . . . , φn−1) : |θ − φ| ≤ t√

n

}
⊂ B(υ, t)

is an angular cube of the desired type. �

As promised, we now have an appropriate function on the types of subsets ofSn−1 that

arise in the case of twisting cones. Combining Lemmas 4.3.2 and 4.3.3 we have proven

Corollary 4.3.4. Letυ ∈ Sn−1 andt < 1. Fix J ∈ N and letα = (α1, . . . , αn) satisfy|α j | ≤ J

for all j. Then the setSn−1 ∩ B(υ, t) supports a smooth functionHα with

∫

Sn−1
Hα(ξ) exp

i
n−1∑

j=1

β jθ j

 dσ(ξ) =



1 if β = α

0 if |β j | ≤ J for all j andβ , α
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and such thatHα satisfies the estimate

|Hα| ≤
(C

t

)(n−1)(2J+3)

(4.50)

Remarks

The reader may wonder why we define complex valued functions when our eventual goal

is a real valued kernelK(x) with the properties listed in Theorem 4.0.3. The basic idea

is that the restriction of a monomial inx to the sphere will give a polynomial in the sines

and cosines of the angular variables, and this can be expressed as a polynomial in the

exponential monomialseiαθ. This (real-valued) polynomial ineiαθ will integrate to zero

against the (complex-valued) kernel, and therefore will integrate to zero against the real

part of the kernel, which will beK(x). While it would be possible to deal directly with

the sine and cosine functions at this point in the proof, it is notationally simpler to use

the method we have been following. Nonetheless it is apparent that the above arguments,

particularly for the case of the sphereSn−1, have been chosen more for their brevity and

simplicity than for the precision of the estimates that result. It is possible to do a more

careful construction that produces somewhat better estimates on the decay of the functions

Hα, and it is certainly possible to do both the construction ofGl(θ) and ofHα(ξ) on more

general subsets of the sphere than those used here.
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4.4 The Kernel onΓ

Building Blocks and Bounds

The hypotheses of Lemma 4.0.4 provide a decomposition ofΓ into

Γ j =

{
r j ≤ |x| ≤ r j+1,

x
|x| ∈ Ξ j

}

Ξ j = Sn−1 ∩ B(ξ j , t)

wheret is independent ofj. Writing I j = [r j , r j+1) we associate to each radial intervalI j

the functionψ j(r) of Section 4.2. For eachj we then apply the result of Corollary 4.3.4 to

the setΞ j ⊂ Sn−1. SettingJ = 2 j + 2 we construct, for each multi-indexα = (α1, . . . , αn−1)

with all |αl | ≤ j, smooth functionsHα supported onXi j and satisfying

∫

Sn−1
H j,α(ξ) exp

i
n−1∑

j=1

β jθ j

 dσ(ξ) =



1 if β = α

0 if |βl | ≤ 2 j + 2 for all l, andβ , α
(4.51)

as well as the estimate

|Hα| ≤
(C

t

)(n−1)(4j+7)

(4.52)

We then combine these with the radial functionsψ j(r) to define

F( j,α)(r, ξ) = ψ j(r)H j,α(ξ)

The functionsF( j,α)(r, ξ) are smooth, supported on the setΓ j, and by Lemma 4.2.1 and the

estimate (4.52) they satisfy the bounds

∣∣∣F( j,α)(r, ξ)
∣∣∣ ≤

(C
t

)(n−1)(4j+7) ( 20
r j+1 − r j

) j+1

(4.53)
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Moreover we have precise knowledge of the lower order moments ofF( j,α) and bounds on

those of higher order. Using the general spherical polar coordinates introduced in (4.45)

we introduce the notation

M( j,α),(k,β) =

∫

Rn
F( j,α)(r, θ)r

keiβθ dσ(θ) dr

and can derive from (4.12) and (4.51) that

M( j,α),(k,β) =



0 if some|βl | ≤ 2 j + 2 andβ , α

0 if k < j

1 if β = α andk = j

µ j,k if β = α andk > j

(4.54)

where we have used the notation of (4.12) for the momentsµ j,k of ψ j(r). In the remaining

case where all|βl | ≥ 2 j + 3 andk ≥ j we have from (4.52) that

∣∣∣M( j,α),(k,β)

∣∣∣ ≤ µ j,k

(C
t

)(n−1)(4j+7)

(4.55)

however in what follows we will only be interested in those momentsM( j,α),(k,β) for which

k ≥ maxl |βl |. For these moments it will be more useful to usek ≥ 2 j + 3 to rewrite (4.55)

as
∣∣∣M( j,α),(k,β)

∣∣∣ ≤ µ j,k

(C
t

)4(n−1)(k− j−1)

(4.56)

Construction

As in the one dimensional case (explained in Section 4.2) we proceed by inductively con-

structing a function with prescribed moments. SetK0(r, θ) = F0,0(r, θ) and define (induc-
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tively)

N j
(k,β) =

∫

Rn
K j(r, θ)rkeiβθ dσ(θ) dr (4.57)

K j+1(r, θ) = K j(r, θ) −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,β)F( j+1,α)(r, θ) (4.58)

so thatN j+1
( j+1,β) = 0 for all β satisfying|βl | ≤ j + 1, l = 1, . . . , n− 1. By (4.54) the functions

F( j+1,α) do not affect the momentsN j+1
(k,β) for k ≤ j, and consequently all of these lower order

moments are zero.

N j+1
(k,β) =



1 if k = 0 andβ = (0, . . . , 0)

0 if k ≤ j + 1 and|βl | ≤ j + 1 for l = 1, . . . , n− 1

(4.59)

There are finitelyF j,α for each j, all of which are supported onΓ j. Since the setsΓ j

are disjoint it follows immediately that the above functionsK j(x) have a pointwise limit

function supported onΓ. In order for this to be of any interest we must have estimates that

show the limit is integrable against polynomials and that its moments are given by the limit

of the moments in (4.59).

Estimates

Our model is the estimation scheme for the one dimensional case that was described in

Section 4.2. Notice that the moment sequenceN j
(k,β) evolves according to the induction

N j+1
(k,β) = N j

(k,β) −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,α)M( j+1,α),(k,β) (4.60)

As mentioned earlier, and implicit in our inductive definition (4.58), we are only interested

in moments (k, β) for which k ≥ maxl |βl |. In this situation we may compare (4.54) and
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(4.56) to see that all of the momentsM( j+1,α),(k,β) occurring in the sum satisfy

∣∣∣M( j+1,α),(k,β)

∣∣∣ ≤ µ j+1,k

(C
t

)4(n−1)(k− j−2)

(4.61)

It is also easily seen that the number of terms in this sum is (2j + 3)n−1. These observations

suggest defining a new sequence by

P0
k = max

{∣∣∣M(0,0),(k,β)

∣∣∣ : |βl | ≤ k for all l = 1, . . . , n− 1
}

(4.62)

Pj+1
k = Pj

k + Pj
j+1µ j+1,k

(C0

t

)4(n−1)(k− j−2)

(4.63)

whereC0 = 2C is twice the constant in (4.61) and is fixed from here onward. The details

of our previous work show thatC0 depends only upon the dimensionn.

The benefit of this new sequence is that it dominates the sequenceN j
(k,β) but will be

much simpler to analyze. We record this as a lemma.

Lemma 4.4.1.For all j, k, andβ with |βl | ≤ k, l = 0, . . . , n− 1 we have the bound

∣∣∣N j
(k,β)

∣∣∣ ≤ Pj
k (4.64)

Proof. For j = 0 this is obvious from the definition. Assuming the truth of the estimate for

all superindices up toj we proceed inductively, looking at two cases. The simpler case is

whenk ≤ 2 j + 4 whereupon|βl | ≤ 2 j + 4 and so by (4.54) allM( j+1,α),(k,β) = 0. Then

∣∣∣N j+1
(k,β)

∣∣∣ =

∣∣∣∣∣∣∣∣
N j

(k,β) −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,α)M( j+1,α),(k,β)

∣∣∣∣∣∣∣∣

=
∣∣∣N j

(k,β)

∣∣∣

≤ Pj
k
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≤ Pj+1
k

The more involved one hask ≥ 2 j + 5. We use the bound (4.61) to obtain

∣∣∣N j+1
(k,β)

∣∣∣ =

∣∣∣∣∣∣∣∣
N j

(k,β) −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,α)M( j+1,α),(k,β)

∣∣∣∣∣∣∣∣

≤
∣∣∣N j

(k,β)

∣∣∣ +

∣∣∣∣∣∣∣∣

n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,α)

∣∣∣∣∣∣∣∣
µ j+1,k

(C
t

)4(n−1)(k− j−2)

≤ Pj
k + (2 j + 3)n−1Pj

j+1µ j+1,k

(C
t

)4(n−1)(k− j−2)

≤ Pj
k + Pj

j+1µ j+1,k

(C0

t

)4(n−1)(k− j−2)

= Pj+1
k

In the last step we used thatk ≥ 2 j + 5 whence 4(k− j − 2) ≥ 4 j + 12 and so (2j + 3)n−1 is

certainly dominated by 2(n−1)(4j+12) = 24(n−1)(k− j−2). �

Our estimates for the sequence{Pj
k} closely mimic those for the one dimensional case

in Section 4.2. The key result is

Lemma 4.4.2.The off-diagonal terms of the sequence{Pj
k} satisfy the estimate

Pj
j+1 ≤ C

e2A( j−1)

Aj−8

j∏

l=0

µl,l+1 (4.65)

whereA =

(C0

t

)4(n−1)

andC is independent ofn andt.

Proof. ExpandingPj+1
k from the definition (4.63) we have

Pj+1
k = Pj

k + Pj
j+1µ j+1,kA

(k− j−2)

= Pj−1
k + Pj−1

j µ j,kA
(k− j−1) + Pj

j+1µ j+1,kA
(k− j−2)
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... (4.66)

= P0
k + P0

1µ1,kA
k−2 + P1

2µ2,kA
k−3 + · · · + Pj

j+1µ j+1,kA
(k− j−2) (4.67)

Recall the estimate (4.22) that stated

µ j−1,k

µ j−1, jµ j,k
≤ 2

k− j + 1

and notice from (4.63) that

Pl
l+1 = Pl−1

l+1 + Pl−1
l µl,l+1

whence

Pl−1
l µl,l+1 ≤ Pl

l+1

Using these results we can compute part of the general term of (4.67)

Pl−1
l µl,k ≤

(
2

k− l

)
Pl−1

l µl,l+1µl+1,k

≤
(

2
k− l

)
Pl

l+1µl+1,k

... inductively

≤
(

2
k− l

) (
2

k− l − 1

)
· · ·

(
2

k− j

)
Pj

j+1µ j+1,k

=
(k− j − 1)!2( j−l+1)

(k− l)!
Pj

j+1µ j+1,k (4.68)
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It is also straightforward from (4.54), (4.55), and (4.22) to see that

P0
k = max

{∣∣∣M(0,0),(k,β)

∣∣∣ : |βl | ≤ k for all l = 1, . . . , n− 1
}

≤ A7µ0,k

≤ A7

(
2
k

)
µ0,1µ1,k

≤ A7

(
2
k

)
P0

1µ1,k

so that applying (4.68) for the casel = 1 we have

P0
k ≤ A7 (k− j − 1)!2( j+1)

k!
Pj

j+1µ j+1,k (4.69)

Now we may substitute the estimates (4.68) and (4.69) into the expression (4.67) forPj+1
k

and obtain

Pj+1
k = P0

k +

j+1∑

l=1

Pl−1
l µl,kA

(k−l−1)

≤
A7 (k− j − 1)!2( j+1)

k!
+

j+1∑

l=1

(k− j − 1)!2( j−l+1)

(k− l)!
A(k−l−1)

 Pj
j+1µ j+1,k

We only need this result for the casek = j + 2 where it reduces to

Pj+1
j+2 ≤


A72( j+1)

( j + 2)!
+

j+1∑

l=1

(2A)( j−l+1)

( j + 2− l)!

 Pj
j+1µ j+1, j+2

=


A72( j+1)

( j + 2)!
+

1
2A

j+1∑

m=1

(2A)m

m!

 Pj
j+1µ j+1, j+2

≤



1
2A

e2APj
j+1µ j+1, j+2 if j ≥ 6

(
A7 +

1
2A

e2A

)
Pj

j+1µ j+1, j+2 if j < 6
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ProvidingA ≥ 10 the above factor is bounded by (e2A/A) independently ofj, so inserting a

small constant to resolve this case we can inductively reduce to

Pj+1
j+2 ≤ C

e2A j

Aj
P1

0

j+1∏

l=1

µl,l+1

≤ C
e2A j

Aj−7

j+1∏

l=0

µl,l+1

�

Properties of the Kernel

It was already mentioned that the inductive definition (4.58) involves only finitely many

functions on each of the disjoint setsΓ j and therefore has a pointwise limit function which

we call K̃(x). With the estimate (4.65) in hand we have a natural bound forK̃(x) on Γ j+1.

From the definition (4.58) and the fact that allF(l,α)(r, ξ) are zero onΓ j+1 except those with

l = j + 1, we see that

K̃(x) = −
n−1∑

l=1

∑

|αl |≤ j+1

N j
( j+1,β)F( j+1,α)(r, ξ)

on the setΓ j+1. Using (4.64) this gives

∣∣∣K̃(x)
∣∣∣ ≤ (2 j + 3)n−1Pj

j+1

∣∣∣F( j+1,α)(r, ξ)
∣∣∣

so that substituting the bounds (4.53) and (4.65) (writing both in terms ofA), then using

(4.14) gives

∣∣∣K̃(x)
∣∣∣ ≤ C(2 j + 3)n−1e2A( j−1)

Aj−8

( A
24(n−1)

) j+1 (
20

r j+2 − r j+1

) j+2 j∏

l=0

µl,l+1
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≤ C
A7

e2A( j−1)

(
20

r j+2 − r j+1

) j+2 j∏

l=0

(l + 1)r l

=
C
A7

e2A( j−1)( j + 1)!


j∏

l=0

r l


(

20
r j+2 − r j+1

) j+2

This is now very similar to the situation encountered in our one dimensional construc-

tion (see Section 4.2, particularly (4.27)). If we set

r j = T exp
[
2 log2( j + j0)

]
(4.70)

then we can directly apply the estimate (4.29) of Lemma 4.2.4 to obtain on the setΓ j

log
∣∣∣K̃(x)

∣∣∣ ≤ C − 7 logA + 2A( j − 2) + 2 j0 log2( j + j0) − 2( j + j0) log( j + j0)

≤ −( j + j0 + 1) log(j + j0 + 1) (4.71)

for all sufficiently large j. By the definition (4.70) we also know that log|x| ≤ logT +

2 log2( j + j0 + 1) onΓ j, so that

log( j + j0 + 1) ≥
(
1
2

log
|x|
T

)1/2

and therefore

log
∣∣∣K̃(x)

∣∣∣ ≤ −
(
1
2

log
|x|
T

)1/2

exp

(
1
2

log
|x|
T

)1/2

(4.72)

for all sufficiently large|x|. This rate of decay ensures̃K(x) is integrable against all func-

tions having at most polynomial growth in the variable|x|, and by the construction (see
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(4.59)) and the dominated convergence theorem we have

∫

Rn
K̃(r, ξ)rkeiβθ dσ(θ) dr =



1 if k = 0 andβ = (0, . . . , 0)

0 if k ∈ N \ {0} and all|βl | ≤ k

(4.73)

At this point we pause to recognize that (4.73) implies the functionK̃(x) has zero poly-

nomial moments except for the moment corresponding to the constant function. This is

because all polynomials inx1, . . . , xn may be expressed in terms of functionsrkeiβθ.

Lemma 4.4.3.Any monomialxα may be written

xα = r |α|
∑

β

aβe
iβθ (4.74)

wherer = |x| and eachβ occurring in the sum satisfies|βl | ≤ |α| for l = 1,2, . . . , n.

Proof. We write
xα

r |α|
=

xα

|x||α| = ξα (4.75)

whereξ is a point onSn−1. Recall from (4.45) that

ξ j =



cosθ1 if j = 1

cosθ j
∏ j−1

l=1 sinθl if 1 < j < n

∏n−1
l=1 sinθl if j = n

so that

ξα =
(
cosα1 θ1

) n−1∏

j=1

cosθ j

j−1∏

l=1

sinθl


α j 

n−1∏

l=1

sinθl


αn

(4.76)
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which is a polynomial ineiβθ after substituting

cosθ j =
eiθ j + eiθ j

2
sinθ j =

eiθ j − eiθ j

2i

and in conjunction with (4.75) gives a representation of the form of (4.74). We note in

particular that the variableθ j occurs in (4.76) only as

(
cosθ j

)α j

n−1∏

l= j+1

(
sinθ j

)αl =
(
cosθ j

)α j
(
sinθ j

)α j+1+···+αn−1

=

(
eiθ j + eiθ j

2

)α j
(
eiθ j − eiθ j

2i

)α j+1+···+αn−1

so that for eachβ in (4.74) we have

|β j | ≤
∑

l≥ j

|αl | ≤ |α|

�

As a consequence of Lemma 4.4.3 we conclude from (4.73) that

∫

Rn
K̃(x)xα dσ(θ) dr =



1 if α = (0, . . . ,0)

0 if α ∈ Nn \ {(0, . . . , 0)}

Sincexα is a real-valued function the same is true whenK̃(x) is replaced by its real part

Re(K̃). Adjusting by the factor|x|n−1 that relatesdσ(θ) dr to dx we define

K(x) =
Re

(
K̃(x)

)
|x|n−1
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which is a smooth function supported onΓ = Sppt(K̃), satisfies

∫

Rn
K(x)xα dx =



1 if α = (0, . . . , 0)

0 if α ∈ Nn \ {(0, . . . , 0)}

and is bounded by
|K̃(x)|
|x|n−1

. The estimate (4.72) gives a bound for the decay ofK(x) when

|x| is large, so there is a constantC = C(n, t, j0,T) such that

∣∣∣K(x)
∣∣∣ ≤ C
|x|n−1

exp

−
(
1
2

log
|x|
T

)1/2

exp

(
1
2

log
|x|
T

)1/2

This completes the proof of Lemma 4.0.4 and therefore Theorem 4.0.3.



Chapter 5

Proof of the Main Theorem

The goal of this chapter is to prove Theorem 2.1.1. Following the method outlined in

Section 2.2 we define an extension operator as a smooth sum of operators corresponding

to cubes. The operator for a cubeQ is constructed in Section 5.2 and involves convolution

against a polynomial reproducing kernel of the type introduced in Chapter 4 and supported

on one of the twisting cones discussed in Chapter 3. Section 5.3 then deals with proving

that this operator takesf ∈ Wk,p(Ω) to E f ∈ Wk,p(
(
Ωc)o) by establishing the estimates

described in Section 2.2, and in Section 5.4 we show that the result is an extension off .

5.1 An Elementary Reduction

From the results of Chapter 3 we have a good understanding of the geometry of that part of

Ω which lies close to∂Ω. All of our constructions will involve this geometry and therefore

only be applicable in this region. However this is not really a restriction on our method

because the problem of extendingf ∈ Wk,p(Ω) is in a natural sense a local problem near

∂Ω. The simplest way to see this is from the following lemma

Lemma 5.1.1.Givenλ > 0 and f ∈Wk,p(Ω) there isg ∈Wk,p(Ω) such that

101
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• The support ofg is in {x ∈ Ω : dist (x, ∂Ω) ≤ λ},

• The functionsf andg are equal on the set{x ∈ Ω : dist(x, ∂Ω) ≤ λ/2}

• There is an estimate

‖g‖Wk,p(Ω) ≤ C(λ, k)‖ f ‖Wk,p(Ω)

Proof. Letχ(x) be aC∞ function supported onB(0,1) and with
∫
χ = 1. Thenχt = t−n(x/t)

is C∞, supported onB(0, t) and satisfies|∇mχ| ≤ C(m)t−m. Convolution of the characteristic

function of {x ∈ Ω : dist(x, ∂Ω) ≤ 3λ/4} with χλ/4(x) then gives a functionΦ ∈ C∞ such

that

Φ(y) ≡



1 on{x ∈ Ω : dist(x, ∂Ω) ≤ λ/2}

0 on{x ∈ Ω : dist(x, ∂Ω) ≥ λ}

and with the estimates|∇mΦ| ≤ C(m)λ−m on the remaining piece ofΩ. The productg(x) =

f (x)Φ(x) now has derivatives

Dαg(x) =
∑

0≤β≤α
Dβ f (x)Dα−βΦ(x)

and therefore

‖Dαg(x)‖Lp ≤
∑

0≤β≤α
‖Dα−β f ‖LpC(|α − β|)λ−|α−β|

≤ C(λ, k)‖ f ‖Wk,p(Ω)

for |α| ≤ k, as was required. �

An immediate consequence of Lemma 5.1.1 is that if we can define a functionEg on
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Ωc such that

G(x) =



g(x) for x ∈ Ω

Eg(x) for x ∈ Ωc

is in Wk,p(Rn) with ‖G‖Wk,p(Rn) ≤ C‖g‖Wk,p(Ω) then

F(x) =



f (x) for x ∈ Ω

Eg(x) for x ∈ Ωc

also has‖F‖Wk,p(Rn) ≤ C(λ, k)‖ f ‖Wk,p(Ω), so the problem of extension forWk,p(Ω) need only

involve functions supported on a small neighborhood of∂Ω.

5.2 The Extension Operator

We wish to define our extension operator as a smooth sum of operatorsEQ, where eachEQ

is convolution with a polynomial reproducing kernel supported on a twisting cone corre-

sponding toQ. The fact that such a kernel necessarily has unbounded support inevitably

introduces some technicalities. They are mostly dealt with by smoothly cutting off f at

some distance from∂Ω as in Section 5.1, however we also need a preliminary construction

of an unbounded twisting cone corresponding to a cube.

The Cone and Kernel for a Small Cube

LetW1 be the Whitney cubes from
(
Ωc)o such thatl(Q) ≤ εδ/200n and fix Q ∈ W1.

Corresponding to this cube we may take a chain{S j} of Whitney cubes ofΩ with properties

as in Lemma 3.2.3. Within the chain{S j} we have a twisting coneΓQ as constructed in

Chapter 3 Section 3.3.
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In order to apply the results of Chapter 4 we translateΓQ to the origin and rescale by

l(Q)−1. This sort of translating and rescaling will occur several times during the proof so

we take this opportunity to fix some notation. Unadorned variables and setsx, y, ΓQ will

be in the usual spaceRn, while symbols decorated with a tilde, like ˜x, ỹ, and Γ̃Q, will

refer to the corresponding objects in the (dimensionless) parameter spaceRn. The relevant

transformation is ˜x = (x− xQ)/l(Q), and our first use of it is

Γ̃Q =
1

l(Q)
(
ΓQ − xQ

)

Recall from Lemma 3.2.3 that the radius of the twisting coneΓQ grows linearly with the

distance fromQ for some range of scales. Rescaling this toΓ̃Q we see that there is an inner

radiusR0, an outer radiusR1(l(Q))−1, and a constantt such that for all ˜r ∈ [R0,R1(l(Q))−1]

there isỹ with |ỹ| = r̃ and

B(ỹ, t|ỹ|) ⊂ Γ̃Q (5.1)

Each of the constantsR0, R1 andt depends only onn, ε, andδ. In particular we note for

later reference that in Lemma 3.2.3 we had a cube of sizeεδ/10
√

n at radiusR1 from xQ

and so by (1.1) we can takeR1 = εδ/10.

If (5.1) were true also for ˜r ≥ R1(l(Q))−1 then Theorem 4.0.3 could be applied to pro-

duce a reproducing kernel for polynomials onΓ̃Q. To make this possible we will adjoin a

piece of cone tõΓQ in the following manner.

Apply (5.1) to findỹ with |ỹ| = R1(l(Q))−1 andB = B(ỹ, t|ỹ|) ⊂ Γ̃Q. The set we attach to

Γ̃Q is the unbounded piece of cone overB∩ R1(l(Q))−1Sn−1 with vertex at the origin. This

may be written {
x̃ : |x̃| ≥ R1(l(Q))−1 and

R1(l(Q))−1

|x| x ∈ B(ỹ, t|ỹ|)
}

In order to avoid some technical issues later we trim extraneous material fromΓ̃Q as well
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as attaching the new piece. With ˜y as above define

Γ̃∗Q =
(
Γ̃Q ∩ {

R0 ≤ |x̃| ≤ R1(l(Q))−1}) ∪
{

x̃ : |x̃| ≥ R1(l(Q))−1 and
R1(l(Q))−1

|x| x ∈ B(ỹ, t|ỹ|)
}

In keeping with our notation we also define

Γ∗Q = l(Q)
(
Γ̃∗Q + xQ

)

The result of the construction so far is illustrated in Figure 5.2.

✱

Q

Q

Γ

Γ

Q

Figure 5.1: The setΓ∗Q

We record for future reference a trivial consequence of Lemma 3.3.1.

Lemma 5.2.1. If ỹ ∈ Γ̃Q and x ∈ (
17/16

)
Q then

(
x + l(Q)ỹ

) ∈ S j for someS j in the chain

coveringΓQ. In fact if ỹ is such that
(
xQ+l(Q)ỹ

) ∈ ΓQ∩S j then
(
x+l(Q)ỹ

) ∈ S j−1∪S j∪S j+1.

Now Γ̃∗Q has the property that for all ˜r ≥ R0 there isỹ with |ỹ| = r̃ and

B
(
ỹ, t|ỹ|) ⊂ Γ̃∗Q
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Applying Theorem 4.0.3 we then have a smooth functionK̃Q(ỹ) supported oñΓ∗Q and having

the properties

∫

Rn
ỹαK̃Q(ỹ) =



1 if α = (0, . . . ,0)

0 if α ∈ Nn \ {(0, . . . , 0)}
(5.2)

∣∣∣K̃Q(ỹ)
∣∣∣ ≤ C
|ỹ|n−1

exp

−
(
1
2

log
|ỹ|
T

)1/2

exp

(
1
2

log
|ỹ|
T

)1/2 (5.3)

whereC andT are constants depending only onR0, R1, andt, and therefore only onn, ε,

andδ. It will be convenient later to have simpler notation for (5.3) and to know a variant

of it on cubesS j of the chain containingΓQ. We therefore record that ifx ∈ (
17/16

)
Q and

y ∈ S j then by Lemma 5.2.1 and the linear growth (3.5) of the chain{S j}
∣∣∣∣∣∣K̃Q

(
y− x
l(Q)

)∣∣∣∣∣∣ ≤
(

l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

)
(5.4)

where

κ(s) = C exp

−
(
1
2

log
s
T

)1/2

exp

(
1
2

log
s
T

)1/2 (5.5)

Definition of the Operator

Let f ∈ L1
loc(Ω). To accommodate the restriction that we must work on a small neighbor-

hood of∂Ω, we first multiply f by theC∞ cutoff function introduced in Section 5.1 with

λ = εδ/100n. Somewhat abusing notation we also usef to denote the resulting function,

which now vanishes identically on any sufficiently large Whitney cubeS.

f ≡ 0 onS if l(S) ≥ εδ

100
√

n
(5.6)
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Fix Q ∈ W1. In essence we wish to defineEQ f on
(
17/16

)
Q by convolution of f

againstK̃Q with a scaling parameter ofl(Q), however a slight difficulty is introduced by the

fact that f may be undefined at points ofΓ∗Q \ ΓQ. To avoid this annoyance we cut off f

outside the set of interest, which in this case is allx such that|x̃| ≤ R1(l(Q))−1. Let

fQ(x) =



f (x) if |x− xQ| ≤ R1

0 otherwise

(5.7)

It is worth noting that the use of a characteristic function to cutf here will not be a problem

because it occurs at the fixed radiusR1 from xQ. At this radius the cubesS j coveringΓQ

have length at leastεδ/(10
√

n) and we already know from (5.6) thatf ≡ 0 on these cubes.

The functionfQ is therefore aC∞ continuation off from ΓQ to Γ∗Q.

Define the operatorEQ f (x) for x ∈ (
17/16

)
Q by

EQ f (x) =



∫

Rn
fQ(x + l(Q)ỹ)K̃Q(ỹ) dỹ if Q ∈ W1

0 otherwise

(5.8)

Note from the preceding discussion that the convolution really only involvesf on a small

neighborhood ofΓQ. In particular it follows from Lemma 5.2.1 and the factfQ ≡ 0 on

Γ∗Q \ ΓQ that the convolution in (5.8) only involves values offQ on∪S j, where in particular

fQ coincides withf . (To see this last statement is true on the largest cubes from the chain

{S j} we must again use thatf ≡ 0 on these cubes by (5.6).)

Finally we define the extension operator at all points in
(
Ωc)o by

EQ f (x) =
∑

Q

EQ f (x)ΦQ(x) (5.9)

as previewed in (2.4) of Section 2.2. The functionsΦQ(x) are the smooth partition of unity
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introduced in Lemma 2.2.1. We also defineE f (x) = f (x) at all pointsx ∈ Ω. By Lemma

1.1.4 the boundary∂Ω has no measure, soE f is defined almost everywhere.

5.3 Estimates for the Extension Operator

The purpose of this section is to prove that our operator gives a function in the correct space

on
(
Ωc)o. We state this as a theorem.

Theorem 5.3.1.For fixedk ∈ N, 1 ≤ p ≤ ∞, and f ∈ Wk,p(Ω), the functionE f is in

Wk,p((Ωc)o) with the estimate

∥∥∥E f
∥∥∥

Wk,p
((

Ωc
)o) ≤ C(n, ε, δ, k, p)

∥∥∥ f
∥∥∥

Wk,p(Ω)
(5.10)

Proof. The first step in definingE f was to replacef by the product off with the smooth

cutoff function introduced in Section 5.1. We see from Lemma 5.1.1 that theWk,p(Ω) norm

of the product is comparable to that off and therefore it suffices to prove the bound (5.10)

for this new function. By the discussion following that lemma it is also clear that any

extension of the product is also an extension off , so we may henceforth ignore this step in

the definition and simply assume thatf ≡ 0 on cubes of length at leastεδ/(100
√

n).

Suppose that 1≤ p < ∞. By the argument given in Section 2.2 we have the bound

‖DαE f ‖p
Lp
((

Ωc
)o) (5.11)

=
∑

Q′∈W
‖DαE f ‖pLp(Q′)

≤ C1

∑

Q′∈W
‖DαEQ′ f ‖pLp(Q′)

+ C2

∑

Q′∈W

∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)pl(Q′)−|α−β|p‖Dβ(EQ f − EQ′ f )‖pLp(Q′∩(17/16)Q) (5.12)
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for the operator defined by (5.9). The constantsC1 andC2 depend only onn, k and p.

Inserting the estimates proved in Lemma 5.3.4 and Lemma 5.3.5 below we obtain

∥∥∥DαE f
∥∥∥p

Lp
((

Ωc
)o) ≤ C

∥∥∥Dα f (z)
∥∥∥p

Lp(Ω)
+ C

∥∥∥∇k f (y)
∥∥∥p

Lp(Ω)

≤ C‖ f ‖p
Wk,p(Ω)

where our constants now depend also onε andδ. This completes the proof for 1≤ p < ∞
because

∥∥∥E f
∥∥∥

Wk,p
((

Ωc
)o) =

∑

|α|≤k

∥∥∥DαE f
∥∥∥

Lp
((

Ωc
)o)

≤ C(n, ε, δ, k, p)‖ f ‖Wk,p(Ω)

The proof forp = ∞ is also based on the estimates in Lemma 5.3.4 and Lemma 5.3.5,

but in this case we use (2.6) of Chapter 2, Section 2.2. This gives the pointwise bound at

x ∈ Q′

|DαE f (x)| ≤ |DαEQ′ f (x)| +
∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)l(Q′)−|α−β||Dβ(EQ f (x) − EQ′ f (x))|

≤ C‖Dα f ‖L∞(Ω) + C‖∇k f ‖L∞(Ω)l(Q
′)k−|α|

≤ C‖ f ‖Wk,p(Ω)

where we have used thatQ′ has finitely many neighbors and that the length of cubesQ′ ∈
W1 are bounded. �



CHAPTER 5. PROOF OF THE MAIN THEOREM 110

Useful Estimates forK̃Q

As we proceed with the proof we will have need of some estimates for sums and integrals

of K̃Q. To assist in the flow of the material and avoid repetition we list them here.

Lemma 5.3.2.With κ(t) as defined in(5.5)we have

∞∑

j=m

2q jκ(2j) ≤ C12
qmκ(2m)

∞∑

j=0

2q jκ(2j) ≤ C2

whereC1 andC2 depend onn, ε, δ, andq but not onm.

Proof. Using the definition (5.5) ofκ(t) we see that there are constantsc1, c2, andc3 de-

pending only onn, ε andδ, such that we may bound the sum by an integral

∞∑

j=m

2q jκ(2j) ≤ c1

∫ ∞

m
exp

[
c2qt− c3t

1/2ec3t1/2
]

dt

= 2qmκ(2m)c1

∫ ∞

m
exp

[
c2q(t −m) − c3

(
t1/2ec3t1/2 −m1/2ec3m1/2)]

dt

= 2qmκ(2m)c1

∫ ∞

0
exp

[
c2qs− c3

(
(s+ m)1/2ec3(s+m)1/2 −m1/2ec3m1/2)]

ds

It is clear this integral is finite for anym ≥ 0 andq, with a boundC(m,q) depending

continuously onm. However ifm> c−2
3 then convexity implies

c3(s+ m)1/2ec3(s+m)1/2 − c3m
1/2ec3m1/2 ≥ c3sec3s1/2 − e

so that in this case the integral term is bounded by

∫ ∞

0
exp

[
c2qs− c3s1/2ec3s1/2

+ e
]

ds≤ C(q)
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and we conclude that the integral is always bounded by the larger ofC(q) and the maximum

of C(m,q) overm ∈ [0, c−2
3 ]. �

Corollary 5.3.3. ∫

Rn

∣∣∣K̃Q(ỹ)
∣∣∣ dỹ ≤ C(n, ε, δ)

Proof. Simply integrate radially by dividingRn up into concentric annuli from radius 2j to

2j+1. From (5.3) and (5.5) we see immediately that

∫

Rn

∣∣∣K̃Q(ỹ)
∣∣∣ dỹ ≤ C

∞∑

j=0

2jκ(2j)

and the result follows from Lemma 5.3.2. �

Estimates for Individual Cubes

The simpler of the estimates we need concerns the behavior of the operatorEQ on the cube

Q. We state it as a lemma

Lemma 5.3.4. If EQ is the operator defined in(5.8) then for1 ≤ p < ∞

∑

Q∈W
‖DαEQ f ‖pLp(Q) ≤ C

∥∥∥Dα f (z)
∥∥∥p

Lp(Ω)
(5.13)

and whenp = ∞

‖DαE f ‖L∞(Q) ≤ C‖Dα f ‖L∞(Ω)

whereC = C(n, ε, δ, k, p).

Proof. The estimate is trivial for those cubes whereEQ is identically zero, so we may

restrict our attention to the cubes where it is given by the integral in (5.8). Asf and its



CHAPTER 5. PROOF OF THE MAIN THEOREM 112

derivatives are locally integrable and̃KQ has rapid decay we may differentiate within the

integral to obtain

DαEQ f (x) =

∫

Rn
Dα fQ(x + l(Q)ỹ)K̃Q(ỹ) dỹ (5.14)

It could be objected thatfQ might have very bad derivatives on the circle|x−xQ| = R1 where

we cut it off by a characteristic function, however this is not an issue for the same reason

given in the comments following (5.7), specifically the fact thatf ≡ 0 in a neighborhood

of Γ∗Q ∩ {|x− xQ| = R1}.
We can now quickly deal with the casep = ∞. The discussion following (5.8) showed

that the only points (x + l(Q)ỹ) where the integrand is non-zero are in the chain{S j} of

Whitney cubes containing the twisting coneΓQ, where in particularfQ ≡ f . Therefore if

f ∈Wk,∞(Ω) we can apply Corollary 5.3.3 to obtain

∣∣∣DαEQ f (x)
∣∣∣ =

∣∣∣∣∣
∫

Rn
Dα fQ(x + l(Q)ỹ)K̃Q(ỹ) dỹ

∣∣∣∣∣

≤
∥∥∥Dα f

∥∥∥
L∞(Ω)

∫

Rn

∣∣∣K̃Q(ỹ)
∣∣∣ dỹ

≤ C
∥∥∥Dα f

∥∥∥
L∞(Ω)

with a constantC = C(n, ε, δ). For the remainder of the proof we will therefore assume that

1 ≤ p < ∞.

Hölder’s inequality and Corollary 5.3.3 may be applied to (5.14) to yield

∣∣∣DαEQ f (x)
∣∣∣ ≤

(∫

Rn

∣∣∣Dα fQ(x + l(Q)ỹ)
∣∣∣p∣∣∣K̃Q(ỹ)

∣∣∣ dỹ

)1/p (∫

Rn

∣∣∣K̃Q(ỹ)
∣∣∣ dỹ

)(p−1)/p

≤ C

(∫

Rn

∣∣∣Dα fQ(x + l(Q)ỹ)
∣∣∣p∣∣∣K̃Q(ỹ)

∣∣∣ dỹ

)1/p
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so we have
∥∥∥DαEQ f

∥∥∥p

Lp(Q)
≤ C

∫

Q

∫

Rn

∣∣∣Dα fQ(x + l(Q)ỹ)
∣∣∣p∣∣∣K̃Q(ỹ)

∣∣∣ dỹ dx (5.15)

Now if we make a change of variables

∫

Rn

∣∣∣Dα fQ(x + l(Q)ỹ)
∣∣∣p∣∣∣K̃Q(ỹ)

∣∣∣ dỹ =
1

l(Q)n

∫

Rn

∣∣∣Dα fQ(z)
∣∣∣p

∣∣∣∣∣∣K̃Q

(
z− x
l(Q)

)∣∣∣∣∣∣ dz

then using Lemma 5.2.1 and the factfQ ≡ 0 onΓ∗Q we see that the support of the integrand

is contained in∪S j. Applying (5.4) to estimate
∣∣∣K̃Q

(
(z− x)/l(Q)

)∣∣∣ for pointsz ∈ S j and

x ∈ Q we may then write

∥∥∥DαEQ f
∥∥∥p

Lp(Q)
≤ C

1
l(Q)n

∫

Q

∑

j

(
l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

) ∫

S j

∣∣∣Dα fQ(z)
∣∣∣p dz dx

≤ C
∑

j

(
l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

) ∫

S j

∣∣∣Dα f (z)
∣∣∣p dz

because the integrand is then independent ofx ∈ Q, and fQ ≡ f on∪S j.

It is now possible to sum over allQ ∈ W1 as is needed for (5.13). We use the notation

introduced in Section 3.3. LetG(S) be the set of all cubesQ ∈ W1 such that the twisting

cone corresponding toQ intersects the Whitney cubeS of Ω. and recall (3.10) in which we

bounded the number of cubes of sizel(Q) = 2−ml(S) in G(S) by C(ε)2nm. This yields

∑

Q∈W1

∥∥∥DαEQ f
∥∥∥p

Lp(Q)
≤ C

∑

Q∈W1

∑

S j∩ΓQ

(
l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

) ∫

S j

∣∣∣Dα f (z)
∣∣∣p dz

≤ C
∑

S∈W(Ω)

∥∥∥Dα f (z)
∥∥∥p

Lp(S)

∑

Q∈G(S)

(
l(Q)
l(S)

)n−1

κ

(
l(S)
l(Q)

)

≤ C
∑

S∈W(Ω)

∥∥∥Dα f (z)
∥∥∥p

Lp(S)


∑

m

2nm2−m(n−1)κ
(
2m)



≤ C
∑

S∈W(Ω)

∥∥∥Dα f (z)
∥∥∥p

Lp(S)
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= C
∥∥∥Dα f (z)

∥∥∥p

Lp(Ω)

where in the penultimate step we used the bound from Lemma 5.3.2. This verifies (5.13)

and proves Lemma 5.3.4. �

Estimates for Pairs of Adjacent Cubes

The estimate needed to prove compatibility of the extensions for pairs of adjacent cubes is

as follows.

Lemma 5.3.5. If EQ andEQ′ are the operators defined by(5.8) for two adjacent cubesQ

andQ′ then for1 ≤ p < ∞

∑

Q′∈W

∑

Q∈N(Q′)

∑

0≤β≤α
c(|α − β|)pl(Q′)−|α−β|p

∥∥∥Dβ(EQ f − EQ′ f )
∥∥∥p

Lp(Q′∩(17/16)Q)

≤ C(n, ε, δ, k, p)
∥∥∥∇k f (y)

∥∥∥p

Lp(Ω)
(5.16)

and for p = ∞ we have forx ∈ Q′

l(Q′)−|α−β|
∣∣∣Dβ(EQ f (x) − EQ′ f (x))

∣∣∣ ≤ C l(Q′)k−|α|‖∇k f ‖L∞(Ω) (5.17)

As this bound is considerably more complicated to obtain than that in Lemma 5.3.4 we

begin with a short overview of the method. In essence the plan is as follows. Corresponding

to the cubesQ andQ′ we have twisting conesΓQ andΓQ′. We approximatef by degree

(k − 1) polynomials, usingPQ on the initial piece ofΓQ and PQ′ on the initial piece of

ΓQ′. The differencef − PQ at any point of the twisting coneΓQ will then be controlled by

the integral of|∇k f | alongΓQ as in Lemma 3.4.2, and the polynomial growth of this error

term will be dominated by the exponential decay ofK̃Q. Similar estimates will hold for
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f − PQ′. The polynomialsPQ andPQ′ will be invariant under the operatorEQ as it involves

convolution against the reproducing kernelK̃Q. It will also be possible to show that the

difference betweenPQ andPQ′ is controlled by the integral of|∇k f | along a tube joining

the intial pieces of the cones. Combining these estimates will give the bound (5.16).

Proof. It is useful to recogize immediately that it suffices to assume bothQ and Q′ are

in W1. This is clear if bothQ and Q′ are too large to be inW1, since in this instance

EQ f ≡ 0 ≡ EQ′ f by definition. However the same occurs when only one of the cubesQ′ ∈
W1, because by the definition ofW1 and (1.2) the neighboring cube hasl(Q) ≥ εδ/50n,

whence (3.3) shows that the smallest cube in the chain{S j} coveringΓQ has length at least

2εδ/(25
√

n) and by (5.6) we know thatf ≡ 0 onΓQ. This again impliesEQ f ≡ 0 ≡ EQ′ f ,

so all estimates are trivial unless bothQ andQ′ are inW1.

To ease readability of the proof we begin here by writingf according to its polyno-

mial approximations onΓQ andΓQ′, but give estimates for the two different types of terms

separately. These appear as Lemma 5.3.6 and Lemma 5.3.8 below.

First we need a a little notation. Recall that the twisting coneΓQ corresponding toQ

has a central curveγQ and at eachz ∈ γQ a radiuss(z). The initial point ofγ is calledz0

and the ballB0 is B0 = B(z0, s(z0)). Analogous definitions are made forγ′,z′0, andB′0. In

Section 3.4 we defined the polynomial fitted to a function on a set; here we letPQ be the

degree (k− 1) polynomial fitted tof on B0 andPQ′ be the corresponding polynomial forf

on B′0, so that for any|α| ≤ k a multi-index

∫

B0

Dα( f − PQ
)
(x) dx = 0 (5.18)

∫

B′0

Dα( f − PQ′
)
(x) dx = 0 (5.19)
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we then wish to rewrite the terms in (5.16) using the expansion

EQ f (x) − EQ′ f (x)

=

∫

Rn
fQ(x + l(Q)ỹ)K̃Q(ỹ) dỹ−

∫

Rn
fQ′(x + l(Q′)z̃)K̃Q′(z̃) dz̃

=

∫

Rn

(
fQ − PQ

)
(x + l(Q)ỹ)K̃Q(ỹ) dỹ +

∫

Rn
PQ(x + l(Q)ỹ)K̃Q(ỹ) dỹ

−
∫

Rn

(
fQ′ − PQ′

)
(x + l(Q′)z̃)K̃Q′(z̃) dz̃−

∫

Rn
PQ′(x + l(Q′)z̃)K̃Q′(z̃) dz̃ (5.20)

however expressions of this type rapidly become large and unwieldy. We therefore intro-

duce yet another piece of notation. Convolution with the scaling parameterl(Q) will be

denoted

g ∗ K̃Q(x) =

∫

Rn
g(x + l(Q)ỹ)K̃Q(ỹ) dỹ (5.21)

so that we may rewrite (5.20) as

EQ f (x) − EQ′ f (x) (5.22)

=
(
( fQ − PQ) ∗ K̃Q

)
+

(
PQ ∗ K̃Q

) − (
PQ′ ∗ K̃Q′

) − (
( fQ′ − PQ′) ∗ K̃Q′

)
(5.23)

If 1 ≤ p < ∞ we take the derivativeDβ, the p-th power, and the integral over (Q′ ∩
(17/16)Q). Using the fact that there are only three terms in the sum we have

∥∥∥Dβ(EQ f − EQ′ f
)∥∥∥p

Lp(Q′∩(17/16)Q)

≤ C(p)
∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q

)∥∥∥∥
p

Lp((17/16)Q)
+ C(p)

∥∥∥∥Dβ(( fQ′ − PQ′) ∗ K̃Q′
)∥∥∥∥

p

Lp(Q′)

+ C(p)
∥∥∥∥Dβ(PQ ∗ K̃Q − PQ′ ∗ K̃Q′

)∥∥∥∥
p

Lp(Q′)

whereupon substituting the bounds from Lemma 5.3.6 and Lemma 5.3.8 completes the

proof in the case 1≤ p < ∞.
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Whenp = ∞we instead obtain the conclusion directly from (5.22) and theL∞ estimates

of Lemma 5.3.6 and Lemma 5.3.8. �

Polynomial Terms

Lemma 5.3.6. Let Q and Q′ be cubes fromW1, the operatorsEQ andEQ′ be defined as

in (5.8), and PQ and PQ′ be the polynomials fitted tof on Q and Q′ as described in the

discussion preceeding(5.18). Using the notation(5.21)we have for1 ≤ p < ∞

∑

Q′∈W1

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q′)−|α−β|p

∥∥∥∥Dβ(PQ ∗ K̃Q − PQ′ ∗ K̃Q′
)∥∥∥∥

p

Lp(Q′)
≤ C

∥∥∥∇k f (y)
∥∥∥p

Lp(Ω)

and for p = ∞

l(Q′)−|α−β|
∥∥∥∥Dβ(PQ ∗ K̃Q − PQ′ ∗ K̃Q′

)∥∥∥∥
L∞(Q′)

≤ C
∥∥∥∇k f (y)

∥∥∥
L∞(Ω)

l(Q′)k−|α|

whereC = C(n, ε, δ, k, p).

We remark that the proof of Lemma 5.3.6 is entirely equivalent to that of Lemma 3.2 of

[Jon81]. The only difference is that we derive (5.24) and (5.25) from the properties of the

kernelK̃Q, whereas in [Jon81] this is (essentially) the definition of the operatorE.

In the course of the proof we will have occasion to use the following elementary conse-

quence of the fact that any two norms on a finite dimensional Banach space are equivalent.

Lemma 5.3.7. If A1 ⊂ A2 has measure|A1| ≥ C1|A2| then for all 1 ≤ p ≤ ∞ there is a

uniform bound

‖P‖Lp(A2) ≤ C(k,C1)‖P‖Lp(A2)

for all polynomialsP of degreek.
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Proof. Our first observation is that

PQ ∗ K̃Q(x) =

∫

Rn
PQ(x + l(Q)ỹ)K̃Q(ỹ) dỹ

= PQ(x) (5.24)

To see this one need only expand the polynomialPQ(x + l(Q)ỹ) as a polynomial inl(Q)ỹ

and use the property (5.2) of the kernelK̃Q. Similarly

PQ′ ∗ K̃Q′(x) = PQ′(x) (5.25)

It therefore suffices to estimate terms of the form

∥∥∥Dβ(PQ − PQ′
)∥∥∥

Lp(Q′)

From (3.3), (3.4), and the definition ofB′0 we see thatB′0 has diameter comparable to both

l(Q′) and dist(Q′, B′0). Together with Lemmma 5.3.7 this produces the bound

∥∥∥Dβ(PQ − PQ′
)∥∥∥

Lp(Q′) ≤ C
∥∥∥Dβ(PQ − PQ′

)∥∥∥
Lp(B′0)

(5.26)

with a constant depending only onn, ε andδ.

To estimate (5.26) we use the Poincaré estimate (3.12) and write

∥∥∥Dβ(PQ − PQ′
)∥∥∥

Lp(B′0)
≤

∥∥∥Dβ( f − PQ′
)∥∥∥

Lp(B′0)
+

∥∥∥Dβ( f − PQ
)∥∥∥

Lp(B′0)

≤ Cs′(z′0)
k−|β|‖∇k f ‖Lp(B′0) +

∥∥∥Dβ( f − PQ
)∥∥∥

Lp(B′0)
(5.27)

The latter term is estimated using the version of the Taylor estimate proved in Section 3.4

of Chapter 3. The polynomial fitted toDβ f on B0 is preciselyDβPQ. Let {T j} be the chain
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of cubes connecting the centers of the ballsB0 andB′0. It was shown in Lemma 3.2.1 that

all of these satisfy
1
C
≤ l(T j)

l(Q′)
≤ C

whereC = C(n, ε, δ), so that restricting to the case 1≤ p < ∞ and applying Lemma 3.4.2

we have

∥∥∥Dβ( f − PQ
)∥∥∥

Lp(B′0)
≤ C

(
l(Tm)

)k−|β|−1
m∑

j=1

l(T j)

(
l(Tm)
l(T j)

)n/p ∥∥∥∇k f (y)
∥∥∥

Lp(T j )

≤ C l(Q′)k−|β|
m∑

j=1

∥∥∥∇k f (y)
∥∥∥

Lp(T j )

It was also shown in Lemma 3.2.1 that the number of cubes in a chain of this type is

bounded by a number depending onn, ε andδ. Using Ḧolder’s inequality we then have

∥∥∥Dβ( f − PQ
)∥∥∥p

Lp(B′0)
≤ C l(Q′)(k−|β|)p

∑

j

∥∥∥∇k f
∥∥∥p

Lp(T j )

where nowC = C(n, ε, δ, k, p). Combining this with (5.27) and usings′(z′0) ≤ Cl(Q′) yields

∥∥∥Dβ(PQ − PQ′
)∥∥∥p

Lp(B′0)
≤ Cs′(z′0)

(k−|β|)p‖∇k f ‖pLp(B′0) + C l(Q′)(k−|β|)p
m∑

j=1

∥∥∥∇k f (y)
∥∥∥p

Lp(T j )

≤ C l(Q′)(k−|β|)p
m∑

j=1

∥∥∥∇k f (y)
∥∥∥p

Lp(T j )
(5.28)

In order to sum terms of the form

l(Q′)−|α−β|p
∥∥∥PQ ∗ K̃Q − PQ′ ∗ K̃Q′

∥∥∥p

Lp(Q′)

over all Q′ ∈ W1, Q ∈ N(Q′) and 0≤ β ≤ α, it is helpful to use the notation introduced

in (3.8) of Section 3.3. We definedF (Q′) to be all cubes occuring in chains connecting
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locations of size comparable tol(Q′) and separated fromQ′ by distance likel(Q′). It is

apparent that the chain{Tm} of (5.28) is of this type with constants depending onε, δ and

n, whereupon the estimate (3.9) allows us to calculate

∑

Q′∈W1

∑

Q∈N(Q)

∑

0≤β≤α
l(Q′)−|α−β|p

∥∥∥PQ ∗ K̃Q − PQ′ ∗ K̃Q′
∥∥∥p

Lp(Q′)

≤ C
∑

Q′∈W

∑

0≤β≤α
l(Q′)−|α−β|pl(Q′)(k−|β|)p

∑

T∈F (Q′)

‖∇k f ‖pLp(T)

≤ C
∑

Q′∈W

∑

T∈F (Q′)

‖∇k f ‖pLp(T)l(Q
′)(k−|α|)p

≤ C
∑

T∈W(Ω)

‖∇k f ‖pLp(T)

= C ‖∇k f ‖pLp(Ω)

where in the second to last inequality we used that|α| ≤ k and that there is a bound on the

size of cubesQ′ ∈ W1. This concludes the proof for the case 1≤ p < ∞.

To complete the proof forf ∈ Wk,∞(Ω) we return to (5.27) and use (3.15) of Lemma

3.4.2 to write

∥∥∥Dβ(PQ − PQ′
)∥∥∥

L∞(B′0)
≤

∥∥∥Dβ( f − PQ′
)∥∥∥

L∞(B′0)
+

∥∥∥Dβ( f − PQ
)∥∥∥

L∞(B′0)

≤ Cs′(z′0)
k−|β|‖∇k f ‖L∞(B′0) + C l(Q′)k−|β|‖∇k f ‖L∞(Ω)

≤ l(Q′)k−|β|‖∇k f ‖L∞(Ω)

because both the diameter ofB′0 and the separation ofB0 from B′0 are comparable tol(Q′)

with constantsC(n, ε, δ). Substituting into (5.26) and multiplying byl(Q′)−|α−β| gives

l(Q′)−|α−β|
∥∥∥∥Dβ(PQ ∗ K̃Q − PQ′ ∗ K̃Q′

)∥∥∥∥
L∞(Q′)

≤ C ‖∇k f ‖L∞(Ω)l(Q
′)k−|α|
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�

Terms involving (f − PQ)

Lemma 5.3.8. Let Q and Q′ be cubes fromW1, the operatorsEQ andEQ′ be defined as

in (5.8), and PQ and PQ′ be the polynomials fitted tof on Q and Q′ as described in the

discussion preceeding(5.18). Using the notation(5.21)we have for1 ≤ p < ∞

∑

Q′∈W1

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)−|α−β|p

∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q
)∥∥∥∥

p

Lp((17/16)Q)
≤ C

∥∥∥∇k f (y)
∥∥∥p

Lp(Ω)
(5.29)

while for p = ∞

l(Q)−|α−β|
∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q

)∥∥∥∥
L∞((17/16)Q)

≤ C
∥∥∥∇k f (y)

∥∥∥
L∞(Ω)

l(Q)k−|α| (5.30)

whereC = C(n, ε, δ, k, p).

Proof. We first differentiate within the integral to write

Dβ(( fQ − PQ) ∗ K̃Q
)
(x) =

∫

Rn
Dβ( fQ − PQ

)
(x + l(Q)ỹ)K̃Q(ỹ) dỹ

as in (5.14) and make the change of variablesz = (x + l(Q)ỹ) to obtain

Dβ(( fQ − PQ) ∗ K̃Q
)
(x) =

1
l(Q)n

∫

Rn
Dβ( fQ − PQ

)
(z)K̃Q

(
z− x
l(Q)

)
dz

Now by Lemma 5.2.1 we know that all points at whichK̃Q
(
(z− x)/l(Q)

)
, 0 lie either in

the union of cubesS j from the chain coveringΓQ, or within distance
√

nl(Q) of Γ∗Q \ ΓQ.

Moreover fQ ≡ 0 outside∪S j and we have the bound (5.4) for̃KQ when z ∈ S j and
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x ∈ (
17/16

)
Q. This allows us to write

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣ ≤
∑

j

(
l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

) ∫

S j

∣∣∣∣Dβ( fQ − PQ
)
(z)

∣∣∣∣ dz
l(Q)n

+

∫

Γ̃∗Q\Γ̃Q

∣∣∣∣DβPQ
(
x + l(Q)ỹ

)∣∣∣∣
∣∣∣K̃Q(ỹ)

∣∣∣ dỹ

It is possible to write a similar estimate for the term involving the integral overΓ̃∗Q \ Γ̃Q. All

we need do is define a collection{Tm} of cubes such that eachTm has length comparable

to its separation fromQ and so∪Tm contains all points within distance
√

nl(Q) of Γ∗Q \ ΓQ.

This is clearly possible from the definition ofΓ̃∗Q and we see that all of the constants of

comparability depend onn, ε, andδ. In particular it is evident that (5.4) is still valid for

these new cubes. We may then adjoin{Tm} to the chain{S j} so that we have a chain covering

all of Γ∗Q. Not all cubes in the chain are Whitney cubes ofΩ, but we need only keep in mind

that fQ ≡ 0 on all those that are not. Using this convention we obtain

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣ ≤
∑

j

(
l(Q)
l(S j)

)n−1

κ

(
l(S j)

l(Q)

) ∫

S j

∣∣∣∣Dβ( fQ − PQ
)
(z)

∣∣∣∣ dz
l(Q)n

(5.31)

Now suppose 1≤ p < ∞ and apply (3.14) of Lemma 3.4.2 with the exponentp = 1 to the

integrals. This gives

∫

S j

∣∣∣∣Dβ( fQ − PQ
)
(z)

∣∣∣∣ dz≤ C
(
l(S j)

)k−|β|−1
j∑

m=1

l(Sm)

(
l(S j)

l(Sm)

)n ∥∥∥∇k f (y)
∥∥∥

L1(Sm)

so that

∫

S j

∣∣∣∣Dβ( fQ − PQ
)
(z)

∣∣∣∣ dz
l(Q)n

≤ C
(
l(S j)

)k−|β|−1
(
l(S j)

l(Q)

)n j∑

m=1

l(Sm)
?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy

This is even valid on the cubes that we appended to the chain; we keep in mind thatfQ ≡ 0
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on those cubes. Substituting back into (5.31)

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣

≤ C
∑

j

(
l(S j)

l(Q)

)
κ

(
l(S j)

l(Q)

) (
l(S j)

)k−|β|−1
j∑

m=1

l(Sm)
?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy

= C l(Q)k−|β|
∑

j

(
l(S j)

l(Q)

)k−|β|
κ

(
l(S j)

l(Q)

) j∑

m=1

l(Sm)
l(Q)

?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy

= C l(Q)k−|β|
∑

m

l(Sm)
l(Q)

?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy


∞∑

j=m

(
l(S j)

l(Q)

)k−|β|
κ

(
l(S j)

l(Q)

)

however the number ofS j of a given scale is bounded by constants depending onn, ε and

δ, so applying Lemma 5.3.2

∞∑

j=m

(
l(S j)

l(Q)

)k−|β|
κ

(
l(S j)

l(Q)

)
≤ C(n, ε, δ, k)

(
l(Sm)
l(Q)

)k−|β|
κ

(
l(Sm)
l(Q)

)

and hence

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣ ≤ C l(Q)k−|β|
∑

m

(
l(Sm)
l(Q)

)k−|β|+1

κ

(
l(Sm)
l(Q)

) ?

Sm

∣∣∣∇k fQ(y)
∣∣∣ dy

Taking thep-th power we may use Ḧolder’s inequality, then the estimate from Lemma 5.3.2

with q = (kp− |β|p + p− n)/(p− 1), and then Jensen’s inequality to conclude

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣p

≤ C l(Q)(k−|β|)p

∞∑

m=1

(
l(Sm)
l(Q)

)n

κ

(
l(Sm)
l(Q)

) (?

Sm

|∇k fQ(y)| dy

)p


∞∑

m=1

(
l(Sm)
l(Q)

)q

κ

(
l(Sm)
l(Q)

)
p−1

≤ C l(Q)(k−|β|)p
∞∑

m=1

(
l(Sm)
l(Q)

)n

κ

(
l(Sm)
l(Q)

) ?

Sm

|∇k fQ(y)|p dy

≤ Cl(Q)(k−|β|)p−n
∞∑

m=1

κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k fQ(y)|p dy
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As the estimate is independent ofx, integration over
(
17/16

)
Q merely increases the con-

stant marginally and cancels a factor ofl(Q)−n. We then have

∥∥∥Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∥∥∥p

Lp((17/16)Q)
≤ Cl(Q)(k−|β|)p

∞∑

m=1

κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k fQ(y)|p dy (5.32)

which is at last in a form appropriate for estimating the sum in (5.29). If we multiply (5.32)

by l(Q)−|α−β|p and sum as in (5.29) we obtain

∑

Q′∈W1

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)−|α−β|p

∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q
)∥∥∥∥

p

Lp((17/16)Q)

≤ C
∑

Q′∈W1

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)(k−|α|)p

∑

Sm∩Γ∗Q,∅
κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k fQ(y)|p dy

but a cubeQ′ has a bounded number of neighborsQ ∈ N(Q′) and there are at mostC(n, k)

values ofβ with 0 ≤ β ≤ α and|α| ≤ k. MoreoverQ ∈ W1 hasl(Q) ≤ C(n, ε, δ) so |α| ≤ k

implies l(Q)(k−|α|)p ≤ 1. If we writeW2 for the collection of cubes that are neighbors of

cubes fromW1 the estimate then reduces to

∑

Q′∈W1

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)−|α−β|p

∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q
)∥∥∥∥

p

Lp((17/16)Q)

≤ C
∑

Q∈W2

∑

Sm∩Γ∗Q,∅
κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k fQ(y)|p dy

Note that sincefQ ≡ 0 on the cubesS j that do not intersectΓQ we may leave those out of the

inner sum. The cubes that remain are Whitney cubes ofΩ on which fQ ≡ f . Reversing the

order of summation and using the notation of Section 3.3 they may be written asQ ∈ G(S).

It was proven in (3.10) that the number of these cubes having scale 2− j l(S) is bounded by
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a constant multiple of 2n j, so

∑

Q′∈W1

∑

Q∈N(Q′)

∑

0≤β≤α
l(Q)−|α−β|p

∥∥∥∥Dβ(( fQ − PQ) ∗ K̃Q
)∥∥∥∥

p

Lp((17/16)Q)

≤ C
∑

Q∈W2

∑

Sm∩ΓQ,∅
κ

(
l(Sm)
l(Q)

) ∫

Sm

|∇k f (y)|p dy

= C
∑

S∈W(Ω)

∫

S
|∇k f (y)|p dy

∑

Q∈G(S)

κ

(
l(Sm)
l(Q)

)

≤ C
∑

S∈W(Ω)

∫

S
|∇k f (y)|p dy

∞∑

j=0

2n jk(2 j)

≤ C
∑

S∈W(Ω)

∫

S
|∇k f (y)|p dy

≤ C
∥∥∥∇k f (y)

∥∥∥p

Lp(Ω)

where the penultimate estimate is from Lemma 5.3.2.

As has been true throughout, the proof is easier in the casep = ∞. Returning to (5.31)

we need only use (3.15) of Lemma 3.4.2 to deduce

∣∣∣Dβ(( fQ − PQ) ∗ K̃Q
)
(x)

∣∣∣ ≤ ‖∇k f ‖L∞(Ω)

∑

j

(
l(S j)

l(Q)

)
l(S j)

k−|β|κ
(
l(S j)

l(Q)

)

≤ C l(Q)k−|β|‖∇k f ‖L∞(Ω)

∑

j

(
l(S j)

l(Q)

)k−|β|+1

κ

(
l(S j)

l(Q)

)

≤ C l(Q)k−|β|‖∇k f ‖L∞(Ω)

where we used the fact that only finitely manyS j of a given scale intersect the twisting cone,

and the estimate from Lemma 5.3.2. Multiplying byl(Q)−|α−β| gives the desired result.�
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5.4 Completing the Proof

For f ∈ Wk,p(Ω) we have now definedE f on all but∂Ω, which is a set of measure zero,

and we know that theWk,p norm ofE f on bothΩ and
(
Ωc)o is controlled by‖ f ‖Wk,p(Ω). All

that remains is to see thatf ∈ Wk,p(Rn). This may be thought of as checking thatE f on
(
Ωc)o “joins up” correctly with f at∂Ω. The situation in which this is most readily proved

is when f is a smooth function onRn with bounded derivatives onΩ, and we can reduce to

this case using the following result of Jones (Proposition 4.4 of [Jon81]).

Proposition 5.4.1 (Jones).For fixed η > 0, k, p ∈ [1,∞), and f ∈ Wk,p(Ω) there is

g ∈ C∞(Rn) ∩Wk,p(Ω) andM ∈ R with

‖ f − g‖Wk,p(Ω) ≤ Cη

|Dαg| ≤ M for 0 ≤ |α| ≤ k (5.33)

while for fixedf ∈Wk,∞(Ω) there isg ∈ C∞Rn ∩Wk,∞(Ω) with

‖ f − g‖Wk−1,∞(Ω) ≤ Cη

‖g‖Wk,∞(Ω) ≤ C‖ f ‖Wk,∞(Ω) (5.34)

Proof. We give only a sketch of the proof; further details may be found in the original

work [Jon81]. Note first that the usual methods of mollification on Lipschitz domains do

not work everywhere on locally uniform domains, but at distanced from ∂Ω it is perfectly

legitimate to mollify using a smooth bump function supported on a ball of radiusd/2. The

difficulties in the proof involve what can be done near∂Ω.

Jones uses the following procedure to obtain a smooth approximation to the function

in a neighborhood of the boundary. First he takes a collection of Whitney cubes that are
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neither too small nor too large and divides them up to reach a particular dyadic scale. These

should be thought of as forming a thin band parallel to the length of the boundary. To each

of these cubes he associates the polynomial fitted to the cube as discussed in Section 3.4

of Chapter 3, so that it matchesf and its derivatives of order less thank on the cube.

Then he magnifies all of these cubes by a sufficiently large factor that their union covers

a neighborhood of∂Ω. The neighborhood has some known size depending onn, ε andδ.

On the magnified cubes he takes smooth partition of unity which is used to smoothly sum

the fitted polynomials, in each case multiplying the polynomial for a cube by the smooth

bump function for the corresponding magnified cube. The proof that this gives a smooth

approximation to the function near∂Ω involves joining pairs of cubes by tubes of the type

discussed in Section 3.3 and bounding the variation of the polynomials by the integral of

|∇k f | along the tube in a manner akin to the proof of Lemma 5.3.6.

Once he has a smooth function to use near the boundary, Jones takes a smooth cutoff

functionχ (as in Section 5.1) and usesχ and (1−χ) to divideΩ into a narrow neighborhood

of the boundary and a region well separated from the boundary. The width of this neigh-

borhood is chosen so that theWk,p norm of f on the narrow neighborhood of∂Ω is bounded

by η, and the approximation tof near the boundary is defined to beχ times the polyno-

mial approximation discussed above. The remaining region is some fixed distance from the

boundary, sof is smoothed using standard mollifier supported on balls that remain away

from ∂Ω before being multiplied by (1− χ) to give the second piece of the approximating

function. �

For smooth functions of this type it is not difficult to prove that applying the extension

operator produces a function for which all derivatives of orders less thank are Lipschitz at

small scales. We record this as a lemma.

Lemma 5.4.2. Fix k ∈ N and p ∈ [1,∞] and letg ∈ Wk,p(Ω) satisfy the conclusions of
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Proposition 5.4.1. Then for any0 ≤ |α| < k the functionDαEg is locally Lipschitz onRn.

Proof. Fix α with 0 ≤ |α| < k. If x ∈ Ω thenEg = g in a neighborhood ofx andDαg is

Lipschitz there by the appropriate choice of (5.33) or (5.34). Moreover it follows from the

L∞ case of Theorem 5.3.1 thatEg satisfies the same bounds (with a multiplicative constant)

on
(
Ωc)o and is therefore Lipschitz in a neighborhood ofx ∈ (

Ωc)o by the same argument.

We therefore need only show thatDαg is Lipschitz in a neighborhood of any point of∂Ω,

for which purpose it clearly suffices that there is a constants> 0 such that ifx ∈ (
Ωc)o and

y ∈ Ω with |x− y| < s then

∣∣∣Dα(Eg(x) − Eg(y)
)∣∣∣ ≤ C|x− y| (5.35)

We will take s = εδ/200n. Fix x ∈ (
Ωc)o andy ∈ Ω with |x − y| < s. Let Q be the

Whitney cube of
(
Ωc)o that containsx, let xQ denote the center ofQ, and takeyQ to be

the initial point of the curveγ around which we have the twisting coneΓQ. Integration

againstK̃Q preserves polynomials, so in particular it will preserve the constant function

L = Dαg(yQ). SinceEg(xQ) = EQg(xQ) we may compute

∣∣∣DαEg(xQ) − Dαg(yQ)
∣∣∣ =

∣∣∣∣∣
∫

Rn

(
DαgQ(xQ + l(Q)ỹ) − L

)
K̃Q(ỹ) dỹ

∣∣∣∣∣

≤
∫

Rn

∣∣∣DαgQ(xQ + l(Q)ỹ) − L
∣∣∣∣∣∣K̃Q(ỹ)

∣∣∣ dỹ

Reasoning as in the proof of theL∞ estimate for Lemma 5.3.8 we see that

∣∣∣DαgQ(x + l(Q)ỹ) − L
∣∣∣ =

∣∣∣DαgQ(xQ + l(Q)ỹ) − Dαg(yQ)
∣∣∣

≤ C
∣∣∣xQ + l(Q)ỹ− yQ

∣∣∣k−|α|‖∇kg‖L∞(Ω)
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and this may be integrated against|K̃Q| to provide

∣∣∣DαEg(xQ) − Dαg(yQ)
∣∣∣ ≤ C l(Q)k−|α|‖∇kg‖L∞(Ω)

≤ C |x− y|k−|α|‖∇kg‖L∞(Ω) (5.36)

We also know from Lemma 3.2.3

|x− xQ| ≤ dist(xQ,Ω) ≤ |x− y| (5.37)

|xQ − yQ| ≤ 20
√

nl(Q) ≤ C|x− y| (5.38)

It follows from (5.37) and the known bound on|DαEg|
L∞

((
Ωc
)o) that

∣∣∣Eg(x) − Eg(xQ)
∣∣∣ ≤ C‖∇kg‖L∞(Ω)|x− y| (5.39)

and from (5.38) that|yQ− y| ≤ 25
√

n|x− y|. This is certainly less thanδ so we may connect

y to yQ with a chain of cubes and apply theL∞ estimate in Lemma 3.4.2 to conclude

∣∣∣Dαg(y) − Dαg(yQ)
∣∣∣ ≤ C‖∇kg‖L∞(Ω)|x− y|k−|α|

This may be combined with (5.36), (5.39), and the fact|x− y| < 1 to prove (5.35). �

Using Lemma 5.4.2 we see that anyg satisfying the conclusions of Proposition 5.4.1 has

locally Lipschitz derivatives of all orders less thank and is thereforek-times differentiable

almost everywhere. As∂Ω has measure zero we conclude from Theorem 5.3.1 thatg ∈
Wk,p(Rn) and

‖Eg‖Wk,p(Rn) ≤ C‖g‖Wk,p(Ω)

so thatE is a bounded linear operator on this space of functions. Proposition 5.4.1 shows
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that we can approximate (or weakly approximate in the casep = ∞) any f ∈ Wk,p(Ω)

by suchg, and consequently thatE f is in Wk,p(Rn) and satisfies the same estimate. This

completes the proof of Theorem 2.1.1.
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