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We consider a domaif c R" and the Sobolev spacké“P of functions withk deriva-
tives inLP. It is well known that extension operators framsP(Q) to W<P(R") exist only
under some assumptions on the geometr2.ofn the case tha® has Lipschitz boundary,
Caldebn showed that for each integkrthere is an extension operator valid Wf-P(Q)
for 1 < p < c. Later work of Stein introduced a degree-independent operator for a Lip-
schitz domain, so that a single operator could be usetVb¥®Q) for all integerk and
all 1 < p < ~. Subsequently Jones introduced an extension operator on locally uni-
form domains. This is a much larger class of domains that includes examples with highly
non-rectifiable boundaries. Jones also proved that these are the sharp class of domains
for extension of Sobolev spaceslitt. The operators constructed by Jones are degree-
dependent: the extension operator\WdP(Q) is not defined on spaces with lower degrees
of smoothness. In the present work we extend the methods used by Stein and Jones and
thereby produce a degree-independent operator that may be used on alMgpBE&son

a locally uniform domair.
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Chapter 1

Preliminaries

1.1 Definitions and Notation

Balls, Cubes and the Dyadic Grid

We work on then-dimensional Euclidean spa®&' and on an open connected domain
Q c R". Points are denotedor (X3, X, .. ., X,). The Euclidean distance between two points
is [x—Yl, the distance fromx to a setA is dist(x, A) = infyca [X—Y], and the distance between
two sets is dis#, B) = inf [x —y| : X € A,y € B. Balls are writterB(x,r) = {y : [x—-y| <r}.

At times it will be convenient to writd B for the ball concentric witiB but having times

its radius.

A set of the formQ(X) = {y : ly; — x| < |/2} is called a cube of centerand size
or sidelength. Usually the center of the cul® is denotedxy and its size id(Q). As
with balls, 2Q is the cube with the same center@sut sized times as large. A dyadic
cube of scale 2j € Z, is a cube having sizel 2nd all of whose vertices lie on the lattice
(21Z)". Clearly each dyadic cube of scalecan be divided into 2dyadic cubes of scale

2i~1 (called its dyadic children) and is itself contained in a unique cube of s¢dldiB
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dyadic parent). The useful covering properties of the dyadic grid of cubes arise as a result
of the following observation: iQ; # Q are dyadic cubes of any scale then either they
have disjoint interiors or the smaller is contained in the larger. Given a collection of dyadic
cubes we can then obtain a cover of their union in which all boxes have pairwise disjoint
interiors by merely removing from the collection any box which is contained in some larger
box. The remaining boxes are those which were maximal under inclusion, and by the above

observation they have disjoint interiors.

The Whitney Decomposition

It is a result of Whitney that any open fetc R" may be decomposed into a collection of
dyadic cubeQ; such that(Q;) is comparable to the distance Qf from 0Q. The proof

we use is from Stein [Ste70] Chapter VI, Section 1.

Lemma 1.1.1.1f Q c R" is open then there is a countable collecti@} of dyadic cubes

with disjoint interiors such that

1< dist(Q;, 0Q) <4

_ 1.1
CANIQ) &
andifQ; N Qc# 0
I(e))
Z < QY <4. (1.2)

The collectionW = {Q;} is called the Whitney decomposition<f

Proof. Consider for eaclj € Z the collection’V of dyadic cubes of length! Zhat have
non-empty intersection with the s = {x : 21" y/n < dist(x, 0Q) < 2I*2+/n}. Itis clear

thatQ = UQ; and that everk € Q; is contained in a dyadic box of length, 2vhereupon
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the cubes inV coverQ. Moreover we have
dist(Q, 0Q) < dist(x, 0Q) < 2*24\/n = 41(Q)

dist(@Q, 9Q) > 2/*1yn — diam@Q) = 2'"**vn- 2/ vn = 2/ vn = I(Q) vn

so that we have verified condition (1.1). It also follows that these cubes do not intersect
QF. In order to obtain cubes with disjoint interiors and condition (1.2) we tékeo be

the subcollection of cubes df which are maximal under inclusion. These cubes céver

and have disjoint interiors. We now know th@t, Q. € W can only intersect if they have

a common boundary point, in which case we can apply (1.1) to obtain

dlSt(Qz,aQ) < dlSt(Ql,ag) + \/ﬁl(Q]_) < 5|(Q1)

but since(Q,) = 2/1(Q,) for somej we deducd = 2 and thereby establish (1.2). O
Observe also that a Whitney cube containing a point of known distang@@ tannot

be too small. In particular ik € Q andQ is a Whitney cube then by (1.1)

4/nl(Q) = dist(Q, 8Q) > dist(x, 4) — VnI(Q)

and therefore we have

Lemma 1.1.2.1f Qis the Whitney cube @& containingx then

dist(x, 0Q2)

I(Q) > "B



CHAPTER 1. PRELIMINARIES 7

Lebesgue and Sobolev Spaces

We usel P(Q, dx) to denote the Lebesgue spaces of (equivalence classes of) functiOns on

with

1/p
IfllLeax = (flflpdx) <00, fO<p<oo
o

IfllLe@ d9 = €sssug|f| < oo, if p=co

wheredxis Lebesgue measure. If no domain is mentioned it is assumed to berRall of
Given a multi-indexa = (a4, ...,an) € N" of lengthle| = 3; a; we write D* for the

derivative 0/0x1)* ...(0/0%,)™. A locally integrable functionf on Q is said to have a

weaka-derivative if there is another locally integrable function which we deisté and

which satisfies the identity

[ o=y [ 1009)

for all C*(Q) functions¢ which have compact support @. The functionf is k times
weakly diferentiable (fork € N) if it has weak derivative®f for all |a|] < k. The
weak gradient is the vectdf = (9/0x4, . ..,d/0%,) andVX is the vector of all weak partial
derivativesD” of order|a| = k.

A function f which isk times weakly diferentiable orf2 is an element of the Sobolev

spaceWkP(Q) if it has finite Sobolev norm:

Ifllwkey = > ID" Fliusey < oo

ler|<k

For ease of notation we may at times wish to refer to the vé{upof somef € WkP(Q)

at a pointx € Q. This is not an a-priori well defined quantity, so we make the usual
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convention that at the Lebesgue pointsf of

f(x):limJC f
r—0 B(x,r)

wheref f denotes the average 6f At the points which are not Lebesgue we §6t) = 0.

Lipschitz Domains

A Special Lipschitz Domain ([Ste70] Chapter VI, Section 3.2) is a set of points lying above
a Lipschitz graph. More precisely, lé(x) be a real-valued function oR"™? which is

Lipschitz, i.e.

JA(X) — AlY)I

— <
IX—=l

IAlILp = sup
and define a domaif2a = {(X, X,) € R" : X, > A(X), x € R™1}. Any set which may be
rotated to coincide with a domain of the foly, is called a Special Lipschitz Domain.

A Lipschitz domain is a domain whose boundary consists of a union of Lipschitz pieces,
no one of which has too small a diameter. One way to define such a déx{depending

on parameters > 0, J € Z and a Lipschitz bound/ > 0) is to require that there be a

countable collection of balliB(x;, 6)} which have the following properties:
1. No point of R" is contained in more thahdistinct balls from the collection.

2. The balls cover a&/2)-neighborhood 0d<Q, so that any with dist(x,9Q) < §/2 is

N Uij.

3. For eachj there is a Lipschitz map; such that the s& N B; may be translated and

rotated to coincide witli2, N B(0, 9).

This definition is from [Ste70] Chapter VI, Section 3.3, where these are caliednally

smoothdomains. A large number offlierent domains are considered in the literature under
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various diferent names. For example, Adams calls the above conditioBtthag Local
Lipschitz Condition(see [AF03], page 83). Both Adams ([AF03]) and Neaz ([MP97])
extensively discuss conditions of this type, as well as conditions involving cones (described
below) at boundary points. In the interests of brevity we will ignore all of these distinctions,
even when doing so slightly weakens the statements of known theorems. We do mention
that many results which are true of Sobolev spaces on special Lipschitz domains may be
transferred to Lipschitz domains via an appropriate smooth partition of unity. A proof that
this is the case for the types of problems considered in this thesis may be found in [Ste70]
Chapter VI Section 3.3, but we shall not repeat it here.

From our perspective, one of the most useful features of Lipschitz domains is the ex-
istence of cones at boundary points. We call any set which may be rotated to coincide
with

I'(e,6) = {(X %) : IX| < [X.|tana, 0 < X, <6, xe R™Y (1.3)

a cone of lengtld, anglea and vertex at the origin. We 1€t = {(x, —X,) : (X, Xy) € ['} and
define a double cone to be any set obtained by rotatidn-efl’ U I'~. Given a Lipschitz
domain it is not dificult to define a collectiomf“,-} of rotations of a fixed double cone with
vertex at the origin, length and angle dependingg@nd M, and such that at every point

x € dQ we have a double corlg = T'U T~ with

X+y:yelij\0}cQ

{x+y:yel;\0}cQ".

Locally Uniform Domains

Locally uniform domains were introduced by Martio and Sarvas [MS79] and have been

extensively studied. In [Jon80] Jones identified these domains as the extension domains
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Figure 1.1: The Koch snowflake is locally uniform

for BMO functions, and in [Jon81] he addressed the question of extension of Sobolev
functions on these domains (see also Theorem 1.3.3). Jerison and Kenig [JK82] studied
potential theory on locally uniform domains; their work and that of later authors showed
that these are essentially the largest class of domains on which there is a theory of potentials
analogous to that for the upper half space.

Several diferent definitions of locally uniform domains occur in the literature. We use

the one found in [Jon81].

Definition 1.1.3. A domain is(e, 6)-locally uniform if between any pair of poinisy such
that|x —y| < § there is a rectifiable arey c Q of length at moskx — y|/e and having the

property that for allz € y
€lz-Xlz-yl

dist(z, 0Q2) >
(@00) IX=Vl

(1.4)

It is easy to see that a Lipschitz domain is locally uniform for some valuesaafis.
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An example of a locally uniform domain which is not Lipschitz is the interior of the Koch
snowflake (Figure 1.1). The boundary of this set is not only non-rectifiable but indeed
not of Hausdoff dimension 1. In general it is possible to define for ang [n—1,n) a
locally uniform domain inR" with boundary dimension, however it is not possible that

the boundary have positive measuréih

Lemma 1.1.4.1f Q c R"is (e, 6) locally uniform then the@-dimensional Lebesgue measure

of the boundary i$Q| = 0.

Proof. Fix y € 9Q. We show it cannot be a Lebesgue density poindQf Forr > 0
considerB(y,r). If r < ¢ is suficiently small then there ig; € Q N JdB(X,r) andx, €
QNB(x,r/4). By the definition of local uniformity there is an arc joining them and therefore

a pointze QN dB(x,r/2). We have

X1 —2Z|X2 — Z r
-de-24_r
X1 = Xl 3

and so distf, 0Q) > er/8 by (1.4). Applying Lemma 1.1.2 implies the Whitney cuDe z
hasl(Q) >

er

40+/n
below. It follows thaty cannot be a density point 6f2 and thereforénQ| = O. O

, and hence that the proportionBfy, r) that is contained if is bounded

1.2 An Extension Problem

If Q c R"is adomain and € W*P(R") then it is obvious that the restriction 6fto Q is in
WKP(Q). A natural question to ask is when the converse is the case. The following example
shows that this may depend on the geometr§f and in particular that an outward cusp

may restrict the spaces that can be extended.

Example 1.2.1.Not all functions fromnV2+€(Q) may be extended Wv*?*¢(R?) if Q is the
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set

Q={(xy)eR?*:0<y<x"* 0<x<1
This domain is illustrated in Figure 3.4.2.

To see that this is the case first notice that any function ghi*<(R?) is continuous

by the Sobolev embedding theorem. However the functiony) = x </ has

1
1

f 2+e: —€ l+3ed —
fQI(Z)I foxx X= 5

2+e 1 2+e 1
Vf(2)2+ = ( € ) f ~2-2ey 1+3¢ {y — ( € ) 1
fg Vi@l 2+¢€ 0 X X X 2+¢€ €

and it follows thatf is in W-2*¢(Q). Clearly f has no continuous extension k& and

therefore no extension W2+¢(R?).

)
0 1

Figure 1.2: A domain for which extension is not possible

For finitely connected c R? it is shown in [Jon81] that the presence of cusps on the
boundary o2 is exactly what obstructs extension of Sobolev functions. The precise result
is given below as part of Theorem 1.3.4, while the nature of the obstruction caused by a

cusp is further explored at the beginning of Chapter 3.
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For the remainder of this thesis we shall be interested in conditions on the d@main
that guarantee all (or most) of the spa¥és’(Q) arise precisely as restrictions\of¢P(R"),

and on the construction of operators of the form

& : WEP(Q) — WEP(RM)

with estimates

”8f ”WKP(R”) < C” f ||Wk~p(Q)

1.3 Historical Remarks

Early Results

The problem of how to extend Sobolev functions was recognized early in the development
of the theory, but it is fair to say that the particular variant we are interested in was not the
focus of attention. Instead many people were interested in determining the trace space of
the Sobolev space to the boundary of a domain and the circumstances under which func-
tions from the trace space might be extended. In this direction we mention in particular
the works of Sobolev ([Sob50, Sob63]) and of Deny and Lions ([DL54]), which addressed
the important special case of the trace/df? functions. The first result for more general
Sobolev functions is in a paper of Gagliardo ([Gag57]), who identified the trace of the
spacedVLP for all 1 < p < oo. All of these results were for domains with Lipschitz bound-

ary. We also mention the works of SlobodddfEl058]), Aronszajn and Smith ([AS61]),
Lizorkin ([Liz62]), and Stein ([Ste62]), all of which appeared more or less contemporane-

ously with the results of Caldén discussed below.
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Calderon, Stein, and Jones

The first extension theorem that considered all sps¢esis due to Caldeéin [Cal61] and

was an outgrowth of his work on Bessel potentials. He considered a class of domains that
is slightly more general than the Lipschitz domains defined earlier, and used a defintion
written in terms of cones rather than Lipschitz graphs. We will not give a precise definition

of these domains, but state the following theorem as a consequence of his result.

Theorem 1.3.1 (Caldebdn, ). LetQ c R" be a Lipschitz domain. For each fixé&de N

there is a bounded linear extension operator such that fot allp < co
ES T WKP(Q) — WRP(R™) (1.5)

with bound depending am p, k, and the constants of the Lipschitz domain. This extension

has the further property that it extends ahy V\/g’p(Q) to be zero outside.

The operatoﬁg is given by an explicit formula involving integration df against a
singular kernel supported on a cone (as defined in (1.3)). The constraipt4d « is due
to the use of the Caldén-Zygmund theory of singular integrals in the proof. It is worth
remarking that since the operator extends functions Mq‘.jﬁ(ﬂ) to be zero outsid@ we
might expect that it may be interpreted in terms of an extension from a function space
defined ondQ. This is indeed the case and is a particular strength of this theorem as it
actually identifies the trace a¥%P(Q) to 6.

Observe that Theorem 1.3.1 really proves the existence of an infinite collection of op-
eratorsé}g, one for eackk € N. In [Ste67] (see also [Ste70], Chapter VI) Stein provided
an alternative approach that produced a single operator capable of extending all Sobolev

spaces simultaneously.
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Theorem 1.3.2 (Stein).Let Q@ c R" be a Lipschitz domain. There is a bounded linear

extension operatofs such that for ank e Nand1l < p < oo
Es 1 WEP(Q) — WKP(R). (1.6)

with bound depending am k, p and the constants of the Lipschitz domain.

The techniques used by Stein were quitffedent to those of Calden, though they
were also restricted to the case of Lipschitz domains. We note in particular that the operator
no longer extends functions frowgp(Q) to be zero outsid®. Various features of Stein’s
method will be discussed in Section 2.3.

In [Jon81], Jones proved that Sobolev functions can be extended on locally uniform

domains.

Theorem 1.3.3 (Jones)Let Q c R" be an(e, §) locally uniform domain. For each fixed

k € N there is a bounded linear extension operator such that fot allp < oo
& 1 WEP(Q) — WEP(RM) (1.7)

with a bound depending am e, 6, k and p.

This marked a dramatic expansion in the class of domains for which extension operators
could be constructed. (We recall, for example, that a locally uniform domain may have
boundary of dimension any number m+ 1, n), while Lipschitz domains are bounded by
locally rectifiable curves.) Moreover it provided a precise characterization of the bounded

and finitely-connected extension domain®h

Theorem 1.3.4 (Jones)If Q c R? is bounded and finitely connected then the following

are equivalent
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(i) There are extension operatcxfg as in Theorem 1.3.3.
(i) Qis an(e, oo) locally uniform domain.
(i) 9Q consists of a finite number of points and quasicircles.

Theorem 1.3.3 produces an infinite collection of extension operaga,rsne for each
k € N. These operators are not defined on spaces with lower degrees of smoothness, nor do

they operators extend functions frng’p(Q) to be zero outside.

Other Results

The reader will no doubt have noticed several natural questions which were not addressed
in the works we have cited thus far. For example one might ask whether there are operators
extending functions fronwg’p(Q) to be zero outsid€) for a locally uniform domairn,
whether there are analogues of the above operators for more general function spaces than
the Sobolev spaces, or to what extent Theorem 1.3.4 has analogues in higher dimensions.
These questions have been studied by a number of authors; among others we mention
the results ofSvarcman, Gotistein, Christ, Jonsson and Wallin, DeVore and Sharpley,
Rychkov, and Koskela §va78, Gn79, Chr84, JW84, DS93, Ryc99, Kos98]) which answer
many of these questions. It should also be noted that Theorem 1.3.4 was preceded by a ver-
sion of the same theorem for the spat®?, due to Goldstein and Vodojanov ([GV81]),
and that the question in higher dimensions has been partially addressed by Herron and
Koskela ([HK92, HK91]). Recent years have seen an explosion of interest in Sobolev
spaces on general metric spaces. Some extension results in this context are due to Hajtasz
and Matrtio, Nhieu, and Harjulehto ((HM97, NhiO1, Har02]).

As none of these results are really in the direction followed in this thesis we give no

further discussion of the techniques involved or the precise results obtained. Instead we
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identify one other problem that arises when comparing the theorems of Gajd&tein

and Jones.

Problem 1.3.5. Given a locally uniform domaif®, is there a single bounded linear exten-

sion operatoi& such that for allk e Nand1 < p < o

& : WEP(Q) — WEP(RM)

with a bound depending am ¢, 6, k and p?

The purpose of the present work is tfhey a solution to this problem.



Chapter 2

Constructing Extension Operators

2.1 The Main Theorem

The purpose of this thesis is to establish the following extension theorem for Sobolev

spaces:

Theorem 2.1.1.LetQ c R" be an(e, ¢) locally uniform domain. There exists a linear

operator f — &f such that forank e Nand1 < p < o
& WEP(Q) — WEP(RM) (2.1)

IEF ke < (N, €, 6, K, P)IIfllwko)- (2.2)

In this chapter we shall give the framework within which this theorem will be proved.
We proceed by a method which dates back to the seminal work of Whitney [Whi34] on ex-
tensions of Lipschitz functions. Later refinements are due to Hestenes [Hes41] and Seeley
[Seeb4]. It was applied to the study of Sobolev extension operators in a manner parallel
to its use here in the work of Jones [Jon80]. The method involves defining operators on a

collection of Whitney cubes from the interior & = R" \ Q and summing via a smooth

18
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partition of unity supported on the cubes, thereby reducing the extension problem for a do-
main to finding extensions for individual cubes that satisfy a compatibility condition from
cube to cube. The relevant conditions are expressed as certain estimates for the operators
corresponding to the original cubes.

The general framework just described gives a context within which it is easy to iden-
tify the essential dferences between the earlier extension theorems of Caldgral6l]),
Stein ([Ste67], but see also [Ste70] Chapter VI, Section 3), and Jones ([Jon81]), and to pro-
vide intuition for the properties of each. We shall take some time to describe these earlier
works in this manner, both because this presentation is not recorded in the literature and
because it will illuminate the manner in which Theorem 2.1.1 was obtained. In particular it
will be clear that our operators on Whitney cubes are related to those of Stein and that our

method of proof is based on some combination of the work of Stein with that of Jones.

2.2 The Method of Whitney

The method used by Whitney to prove his celebrated extension theorem for Lipschitz func-
tions (see [Whi34]) is the basis of the following approach to the construction of extensions
of functions defined on the domatn

Let ‘W denote the Whitney cubes (2°)°. We begin by taking £ partition of unity
{®q} corresponding tdd. The construction of suolg is standard, and we refer to [Ste70]

Chapter VI, Section 1.3 for a proof of the following lemma.

Lemma 2.2.1. There is a collection of function®q} having the properties
e 0<Po<1
e The support ofdg lies in (17/16)Q.

o 3 Pg=1on(Q°)".
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e For all multi-indicesa, everydq satisfies the estimates

ID?@q| < c(la)l(Q)™ (2.3)

Suppose we have corresponding to each c@beW an operatotg on locally inte-
grable functiond and giving a functior&q f (x) defined for allx € (17/16)Q. We may then

form an operato€ by the locally finite sum

Ef = ) do&of (2.4)
QeWw
= SQlf + Z (8Qf - 8Qr f)(DQ (25)
Qew

where we use (2.5) to emphasize the behavior on a specific@uitieeach of theSq f has

weak derivatives of the appropriate orders we may thé&erintiate to obtain
D'Ef =D"Egf+ Y ) D(Eof - &g f) D" g
QeW 0<B<«
and together with (2.3) we obtain a bound valid@n
DEF < ID"E fl+ > ) clla-pNQ) “PIDP(Eof ~EQ ) (2.6)
{Q:QNQ #0} 0<B<a

though it is more useful for most of our purposes to have the equivaRhbund. For

convenience we label the neighbors@fby settingh(Q’) = {Q: QN Q # 0}.

ID*EfllLrqy < ID*Eq FllLr)

+ Z Z c(le = BINQ) 1 PIDP(Eof - Eg f)liLr@na7/160)
QEN(Q') 0B
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The number of terms on the right of this expression is bounded by a constant depending on
n andk. It follows (from Holder’s inequality, for example) that theth power of the sum

is at most a constant multiple of the sum of ih#h powers, and therefore

ID*Ef 1100
< C(n, k’ p) ”DQSQ’ f“Ep(Qr)

+ C(n, K, p) Z Z C(|a _IBDpI(Q’)_la_ﬂlp“Dﬁ(SQf - 8Q’ f)”ED(Q'm(]J/]_G)Q)

QeN(Q) 0<B<a

Since

a p _ a p
ID"EH], () = > IDER IRy,

Qew

we conclude that in order to prodd € W<P((Q°)°) it is sufficient to consider the quantities

D7 ID"Eq 1Py, 2.7)
Qew

> ol - B)PUQ) “PIDEf — o Dronarey  (28)
QeW QeN(Q) 0<B<a

where it is clear that (2.7) reflects the behavior of the individual extensignsvhereas
(2.8) is a condition on the compatibility éfy with its neighboring operato&,.

At this point we have only a framework for constructing a function and estimating its
derivatives. Obviously foEf(x) to be an extension of there will be more work to be
done, however this is not so onerous as might be supposed. In the proof of Theorem 2.1.1
the domainQ is locally uniform, so by Lemma 1.1.4 the boundary has measure zero and
no special definition oEf needs to be made there. It will be necessary to verify &fat
“matches up” correctly withf at the boundary (essentially that thekr< 1)-th derivatives
are Lipschitz there - see Section 5.4), but this will be a small matter by comparison with

giving an appropriate definition of the operatdg so that (2.7) and (2.8) are valid. In
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practice most of the new work in this thesis relates to question of how best to define the

operatorsSg. We begin this task by studying some prior work on extension operators.

2.3 The Operators of Caldebn, Stein, and Jones

The Operator of Calderén

In the remarks following Theorem 1.3.1 it was mentioned that Céaldelefines his ex-
tension operator via integration against a singular kernel supported on a cone. We do not
wish to pursue the original definition here, but instead note in the case the function to be
extended is assumed to be smooth(there is an equivalent definition in terms of the
values off and its derivatives 0AQ. The equivalence is established using integration by
parts and is outlined both in [Cal61] and [Ste70] Chapter VI, Section 4.8. There are several
advantages to using this second definition, but for our purposes the main benefit is that
we recognize a slight modification of Cal@ers construction that easily fits the form of

the Whitney method outlined above. We will not prove the following proposition as it is

included here primarily for illustrative purposes.

Proposition 2.3.1. Fix an integerk. LetQ be a Lipschitz domain an@i’; be all Whitney
cubes of(Q°)° having size less than a constant depending on the Lipschitz constant of
Q. For eachz € 9Q let P,(x) be the degredék — 1) Taylor polynomial off at z. If for
eachQ € W, we defineSq f(X) to be the average with respect to arc-length of the Taylor

polynomials inl0Q N 9Q
Eof(X) = f P,(x) dI(2)
10QnIQ

and we otherwise defireef = 0, then&f(x) defined by2.4)is an extension equivalent to
that of Calderon orW*P(Q) N C*(Q). These functions are dense\WP(Q) and conse-

guently the operator extends to the whole space by continuity.
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In this formulation the dependence of Calole’s operator on the degr&ef the Sobolev
space is particularly explicit. It is also apparent that functions fwb?(sz) will be ex-
tended by the zero function. One might expect that a slight modification of this definition
could be used to extend germs of functions on any closef sepporting a suitable locally

finite measurelu via

Eof () = fOQ P du()

and that with an appropriately defined function spaceSottis would be an extension
operator. This is indeed the case under quite general circumstances. For results of this
kind on Sobolev, Lipschitz, Besov, and other spaces the reader should consult the works of
Jonsson and Wallin, summarized in their monograph [JW84]. We mention in passing that
for a locally uniform domain it sflices for eaclQ to let dug be the Frostman measure on

10Q N 4Q.

The Operator of Jones

In [Jon80] Jones introduced a type of reflection (akin to quasiconformal reflection) that is
possible on anye(, 6) locally uniform domain. I1fW; denotes the collection of Whitney
cubes ofQ) having size less than a constant depending @md ¢, then it is possible to
assign to ever@ € W; a Whitney cube&* from the Whitney decomposition & which

we call the reflection of). The cubeQ* satisfies

Q) _, dist@Q, Q%) < CI(Q)

<1 =

The reflection is not unique, however the number of cu@ethat could occur as reflections
of a givenQ is bounded by constants dependingeceinds. The number of cube® that

can share a given reflect€¥ is similarly bounded.
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Let k be fixed and considelr € WkP(Q). The intuition underpinning Jones’ extension
operator is that the behavior of the extensiwif on the Whitney cub& € ‘W should
record information about the derivatives of order ujtol on a reflected cub®*. To this
end he takes the unique polynomR(Q*) of degreek — 1 which best fitsf on Q* in the

sense that for ally] < k-1

fQ D(f-PQ))=0. (2.9)

and define€q f(x) = P(Q*)(X) and&f(X) according to (2.4).

In Section 5.3 of Chapter 5 we will see estimates akin to those used by Jones to prove
that this defines an extension operator. The main techniffadudty is in obtaining esti-
mates like (2.8), where the local connectivity property (1.4) of a locally uniform domain
plays a crucialdle. We note that Jones’ operator depends explicitly on the existence of a

polynomial satisfying (2.9) and consequently is not defined on the spdd§®) for | < k.

The Operator of Stein

In common with the methods used by Calalerand Jones, Stein’s operator is defined in

a way that respects polynomial approximations of the funcfioit differs in that this is
achieved using a kernel that reproduces polynomials of all degrees, so is not limited to a
fixed degree of Sobolev spackV<P.

Stein introduces a smooth functigiit) on [1, o) c R with the moments

o 1 ifj=0
f thy(t) dt = (2.10)
! 0 ifkeN\{0}

and having a certain slow exponential decay. We will give the proof that such a function ex-

ists in Chapter 4, Section 4.1. Itis clear that convolution wift) reproduces polynomials
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in the real variable.

Here we will modify the definition used by Stein and give instead a presentation that is
better adapted to explanation within the context of the Whitney extension method. Stein’s
original approach may be found in [Ste70] Chapter VI, Section 3.

Let Q be a Special Lipschitz domain aiicbe a cone with vertex at the origin and of
angle such that the translateslofo points ofQ are contained entirely i©2. Then define
I ="'\ B(0,1). We denote points &&" as {, &) wherer € [0, %) and¢ € S™, and take
#(¢) € C=(S™1) a function with fSH #(€) = 1 and such that(r, &) = y(r)¢(¢) is supported

in T'. We note that for all polynomialB(x) onR"

fRn P(x + y)k(y) dy = P(X) (2.11)

Let ‘W be the Whitney cubes qf2)°. To eachQ € ‘W associate the cone, + r
wherexg is the center o). We note that there is a constak{depending on the Lipschitz
constant of2) such that the part of this cone that lies more than dist&i@) from xq is
contained imM. Call this sefl’q. By narrowingl” and slightly increasind we may further
assume that all points within (1Z6)I(Q) of points inI'g are inQ. (See Figure 2.3)

Now define the operator correspondingQdy

Eof(x) = fr f(x+ Al(Q)y)k(y) dy (2.12)

Note that our choice df andA ensure thatx + Al(Q)y) € Q wheneverx € (17/16)Q and
y € Spptk).

We state without proof the following proposition, which serves primarily as motivation

for our later definition of the extension operator sought in Theorem 2.1.1.

Proposition 2.3.2.1f Eqf(X) is as defined if2.12)then the operato& f defined by(2.4)is



CHAPTER 2. CONSTRUCTING EXTENSION OPERATORS 26

Lo

Figure 2.1: The conEq corresponding to a cubs@.

equivalent to the extension operator constructed by Stein and referred to in Theorem 1.3.2.

The proof we give in Sections 5.3 and 5.4 of this thesis encompasses a proof that the
operator just defined is in fact an extension operator on all spA&€€R). The crucial
idea is the polynomial reproducing property (2.11), which will allow us to repfabg a
polynomial fitted tof on part of the coné€’q, in a manner similar to that seen in (2.9) of
Jones’ proof. The error incurred in replacifidpy the polynomial will be controlled by the
integral of|[V¥f| againstk(y)| onTq, So it is essential to know an estimate of the decay of
the kernelk(y). It is for this reason that we noted earlier that the funciigt) has slow

exponential decay. A more precise statement will be forthcoming in Chapter 3.
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2.4 The Extension Operator for the Main Theorem

Our proof of Theorem 2.1.1 will be closely related to the modified version of Stein’s con-
struction that was described in Section 2.3, and in particular our definition of the operator
corresponding to a cub@ will be similar to (2.12). Here we give an overview of the
construction and indicate what is to come in later chapters.

Let Q be an €,0) locally uniform domain andW be the Whitney decomposition of
(Q°)°. It should be clear from the discussion in Section 2.3 that a typical method for ex-
tending a Sobolev functio € W*P(Q) to a small cubeQ € W is to use information
about polynomial approximations tbon a nearby piece d2. The reason the operators
of Caldebn and Jones depend on the smoothikeskthe Sobolev space is that they are
defined in terms of polynomials of fixed degree. By contrast Stein’s operator makes use
of a kernel that reproduces polynomials without a priori knowledge of their degree and is
therefore independent of the ind&x With this in mind we will define the operator for
Theorem 2.1.1 using a polynomial reproducing kernel.

In the case of a Lipschitz domain it is nofflittult to produce a polynomial reproduc-
ing kernel, essentially because the existence of a cone whose translate® lrednces
the problem to a one dimensional question about a function with vanishing non-constant
moments, as in (2.10). We will see in Chapter 4, Section 4.1 that functions of this type
have been well understood for some time. For our locally uniform doféime problem
is substantially more éicult; most of the technical fliculties that arise in this thesis are
related to this question.

The first step is to construct if2 setsI'g that correspond to the cones used in the
Lipschitz case. These will only exist for small Whitney cubes, and will in general be
different for each cube. They will not be cones, but will have some similarity to cones in

that at a distance from Q the setl'o will contain a ball of radius comparable to We
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will think of these agwisting conesand will construct them in Chapter 3, Section 3.3. An

example is shown in Figure 2.4.

Figure 2.2: An example of a twisting cone

The crucial property of the twisting conEg is that they are in some (measure-theoretic)
sense “large enough” to support a reproducing kekagk) for polynomials. Chapter 4 is

devoted to the construction of a smooth functiGmon any twisting cone such that

1 ifa=(0,...,0)

f)(’KQ(x)dx:
= 0 ifaeN"\{O,...,0)

and therefore

[ Poce DK dy= P9

for any polynomialP(x) onRR". (This should be compared to (2.11).)
Once we have a kerné&lg(x) corresponding to each Siciently small cubeQ we will
define&q f(X) by convolution off with Kq as in (2.12). For large Whitney cub@sit will

sufice to se€qf = 0. The operato€ will be the smooth sum (2.4) of the operatéig.
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Full details will be given in Chapter 5, Section 5.2. The bulk of Chapter 5 will be spent on
obtaining estimates for terms of the form (2.7) and (2.8). An elementary argument using
Proposition 4.4 of [Jon81], will then show that the resulting function is an extension.

At this point the reader should be warned that the entire proof we give for Theorem
2.1.1 is done under the additional assumption that the dof@dias diameter at least 1.
This could be avoided by renormalizing our Sobolev spaces so that the polynomials of
degreek— 1 in W*P(Q) have norm zero whef) has diameter less than 1, however the extra
details add nothing to the proof. Nonetheless the reader should be aware that the norm of
the operator oWV*P(Q) will go to infinity if the values ofe andé are held fixed while the

diameter ofQ2 goes to zero.



Chapter 3

Locally Uniform Domains

The setting for our construction of Sobolev extension operators is, anlocally uniform
domainQ with diameter at least 1. Recall from (1.4) of the Preliminaries that this is the

guantitative local connectivity property illustrated in Figure 3.

Definition 3.0.1. A domain is(e, §)-locally uniform if between any pair of poinisy such

that|x — y| < é there is a rectifiable arg/(x,y) c Q having the properties

lengthfy) < bl (3.1)
€
. €lz— Xlz- Yl
distiz, 0Q) > ——— 3.2
@00) > ==~ (32)

The geometry of2 enters into the proof of our main result, Theorem 2.1.1, in several
ways, two of which we wish to highlight here.

Recall Example 1.2.1 in which existence of an extension is obstructed by an outward
cusp ondQ. Whenever it happens that there are arbitrarily small Whitney c@bes
W((©2°)°) such that all Whitney cubes; of Q with dist(Q, S;) < CI(Q) are of sizd(S;) <«

I(Q) we should expect to encounter this problem. Lemma 2.4 of Jones [Jon81] shows

that this cannot occur €2 is locally uniform andl(Q) suficiently small. For the proof

30
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Figure 3.1: Local uniformity is a quantitative local connectivity property

of Theorem 2.1.1 we shall want somewhat more than this, requiring instead that for each
Q € W((Q°)°) there is a nearby set i@ which is suficiently large that it supports a

reproducing kernel for polynomials. In Section 3.3 we produce the appropriate set which
we call a twisting cone. The construction of a reproducing kernel on this type of set is the

subject of Chapter 4.

Figure 3.2: A domain with inward cusp

An equally serious obstruction to extension is illustrated in Figure 3 in whlichR?

has an inward-pointing cusp. Heuristically, one can see that a funtwauld have small
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derivative onQ but have|f(x) — f(y)] > |x —y| for points that are close together yet
separated by the cusp. This would require that the derivative of any extension be very
large on Whitney cube® € W((Q°)°) betweenx andy. Of course the picture is by no
means a proof that extension will fail here, however this was proved by Jones in [Jon81]
(see also Theorem 1.3.4 in the Preliminaries). Tligodilty arises because within distance
CI(Q) of Q € W((Q2°)°) there are large pieces & which are not well connected within

Q. Conditions (3.1) and (3.2) ensure this cannot happen on a locally uniform domain by
producing a tube connecting each @@ais’ c Q of Whitney cubes for which the quantities
1(Q), I(S), I(S), dist(@Q, S), and distQ, S’) are all comparable. We construct such tubes in

Section 3.3 and derive estimates along them in Section 3.4.

3.1 Elementary Lemmas

We will find it convenient to express a number of geometric propertie? of terms of
Whitney cubes. As we wish to reserve the notati@rior cubes of(Q°)°, we shall use
S € W(Q) for cubes from the Whitney decomposition@f Following Jones [Jon81] we
say that two Whitney cubdsuchif their intersection contains a face of one or both of the
cubes, and that a finite sequen8e, S,, ..., S,} of Whitney cubes forms ehainif S; and
Sj.atouchforj=1,...,m AchainS =S,,...S, = S’ is said toconnectS andS’ and to
have lengtm.

The following lemmas are trivial (though sometimes notationally cumbersome) and

included only for completeness.

Lemma 3.1.1. GivenS and S’ Whitney cubes intersecting at a poixtthere is a chain

{S;} of Whitney cubes connectii®to S’ and such thak € N;S;.

Proof. We may suppose without loss of generality that the pwistat the origin. Observe
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also that that size of the cubes are not of consequence here. We may therefore label the 2
cubes that intersect at 0 using vectors (e, e, ..., €, where each of the is +1. The

cube labeleddy, e,, .. ., &) is the one that lies in the unit culj¢;[0, e]. Since two distinct

cubes touchtt their vectors dier in a single component it is clear that a sequeiggwill

be a chainft it arises from a sequenag of vectors in which at most one component is
changed at each step. It is now obvious that starting fronr tteeresponding t& we may
change one component at a time and (after at ma$tanges) obtaiw corresponding to

S’. This sequence of vectors produces the desired chain. m|

Lemma 3.1.2. Given a chain{S;} connectingS to S’ there is a chain consisting only of

cubes from the original chain, connectifgo S’, and having no repeated cubes.

Proof. This is an immediate consequence of the fact th&;if= S;, with j; < j, then

deleting the subsequen@g: + 1),.. ., j) from the chain{S;} produces

S=S1....5,S1 .., Sm =

which is still a chain connecting andS'. O

Lemma 3.1.3.If points x andy may be connected by an aycintersecting finitely many
Whitney cubes, then the culb®g> x andS, > y may be connected by a chain involving

only cubes that intersect the arc and in which no cube is repeated.

Proof. It suffices by the previous lemma to prove that there is a chain built from cubes
intersecting the arc and connectiigto S,. This may be done inductively, beginning with
the trivial chain consisting only of the cul&,. For the inductive step consider a chain
of cubes taken from those intersectipgbeginning withS, but not includingS,. The
intersection ofy with the union of the cubes in this chain contains an arc beginning at

and terminating at a poirztthat lies in the intersection of a cube from the chain and a cube
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not in the chain. It is clearly possible to extend our chain so it ends at a cube containing
and by Lemma 3.1.1 it is then possible to choose any cube contatingnot contained

in the chain and connect it to the chain using only cubes that contain thezpohtlt of
these cubes trivially contain a point of Since the number of cubes intersecting finite

by assumption this process must eventually @jrio the chain, proving the lemma. O

We remark in passing that the method used in the preceding lemma produces a chain
containing the arc and then trims it to remove repetitions. This may mean that the final

chain does not contain the arc, however this will not be important for our purposes.

3.2 Chains between Cubes

Connecting two cubes of comparable size

Suppose that we have two Whitney culieand S’ of Q, separated by a distance that
is comparable to the size of both cubes. Jones [Jon81] showed that in this situation the
uniform domain condition implies they are connected by a chain consisting of a bounded

number of cubes of controlled size. The following lemma is essentially his Lemma 2.4.

Lemma 3.2.1.LetS and S’ be Whitney cubes @62 that have comparable sizes and sepa-

ration, that is

IXs — Xs/|
1(S)

I(S IXs — X/
<C, ———<C
- [(S")

1 <
1(S) C =

1
< < =
C

<C,

wherexs and xs: are the centers o andS’ respectively. Suppose also thés), [(S’) and
IXs — Xs/| are all less thans. Then there is a connecting chath= S;,...,S, = S’ of

Whitney cubes that has finite length< C,, and is such that every culs in the chain
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satisfies

€ G G g £ 16D G
C, ™ I(S) € C, " I(&) €

where the constants; andC, depend only o€ andn.

Proof. Consider the rectifiable curgeconnectingxs to xs and having the properties guar-
anteed by the local uniformity condition. Any poing& +y that does not lie irs or S’ has

|z— xs| > 1(S)/2 and|z— xs/| > 1(S”)/2, whereupon (3.2) implies

el (S)I(S) S elxs — XsI? _ €lXs — X/l

dist(z Q) > =
@0Q) = el % 4% — xo 4C2

and it follows from Lemma 1.1.2 that the Whitney cubg) containingz has length

€lXs — Xg/|

(8@ > S5

From this and the observation that a curve of lerigihtersects no more thart2 Whitney
cubes of length. we deduce that the number of cubes intersecfindpes not exceed
2"1(20C% +/n)/e. Moreover, a similar calculation gives an estimate on the size of the cubes

involved. Forz as before:

A(SI(S)

4lxs — Xs|
d(S)I(S))

Z 2C((S) + ()

> % min{1(S), 1(S")}

dist(z, 0Q2) >

> % max{|(S), I(S))

and therefore
€

(5@ > 5577

max(|(S),1(S")}
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is the required lower bound on the size of the cubes we want for our chain. The upper
bound arises even more simply from the fact that the curve has length ap@ests |/e

and containss which has distance at mo(3t+ \/ﬁ/2) I(S) from 9Q. It follows that the
curve lies within (4+ +/n/2+C/e)l(S) of dQ and cannot intersect Whitney cubes of length
larger than this, so that all Whitney cubes intersecting the cutvave the size described

in the conclusion of the lemma. An application of Lemma 3.1.2 now implies that this

collection of cubes contains a chain of the type sought. O

Connecting a small cube to a large cube

In this context darge cube is one having length comparable=6@ v/n. This is the largest

size of cube which may be found all along the boundary, in the sense that any culf@ from
(or even any point 0fQ2) may be connected to a cube of this size by an arc of comparable
length, and thence by a chain with known structure. This is made precise in the following

lemmas.

Lemma 3.2.2. Let x € Q satisfydist(x, 0Q) < e5/10+/n. Then there is a Whitney culs
of Q with I(S) > €5/10+/n, and such thak may be connected to the centeyof S by a

rectifiable curve lying within distances of 0Q and of length at mosi/e.

Proof. If x already lies in a Whitney cul® of side length at leasty/10+/n then we need
only connectx to the centexs by a straight line. It cannot lie in a larger cube as it is too
close todQ2. Hence we assume that the Whitney cube contaimitgs length less than
€5/104/n.

SinceQ is connected and of diameter at least 1 there is a yaim® such thaix-y| = 6.
From the definition of local uniformity there is a rectifiable cusvef length at most/e

joining x to y, and in particular containing a poiatequidistant from bothx andy. It is
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immediate thalz— x| = |z-Yy| > §/2, so atzwe have by (3.2)

€lz—Xlz-yl
X =l

dist(z 9Q) > > €5/2

and therefore by Lemma 1.1.2 that the Whitney c8be z has length(S’) > €6/10+/n.

Having exhibited a Whitney cube of length at lea$t10+/n on the curve fronxtoy it
is now legitimate to take the first such cube encountered as we traverse the curve beginning
at x. Call this cubeS. The piece of curve connectingto S lies entirely within cubes
smaller tharnes/10+/n, hence within distances of the boundary. The cub® hasl(S) >
€5/10+/n but must be adjacent to a cube with length smaller than that, so by (1.1) and (1.2)
we havel(S) < 4e5/10+/n and it is within distance & of the boundary. Moreover the
curve fromx to S is no longer than that from to z, so has length at mosfe — 6/2. We
can adjoin to this curve a line segment from its endpoind8rto the centexs and have

thereby connecterlto xs by a curve of total length at most

0/e—68/2+ €d/5< /€

and the proof is complete. O

Using the curves from the previous lemma it is possible to describe an aspect of the
geometry neabQ which will be suficient for our construction of reproducing kernels for
polynomials in Chapter 4. Corresponding to &isiently small Whitney cub&) of (Q°)°
we have a chaifS;} of Whitney cubes of2 beginning at scale comparable [{®) and
separated from(Q) by distance at most|(Q). Modulo some constant multiples the chain
of cubes widens linearly, like a cone, as it connects from sk{&¥ to the large scale
€6/10+/n. We think of this chain as an analogue of the cones found at boundary points of

Lipschitz domains, but the chain may curve or even spiral, as shown in Figure 3.2. If it
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is continued taQ it may spiral infinitely, as is readily seen to be the case for the Koch

snowflake domain.

S ]
pans il

Figure 3.3: A chain of cubes 2

Lemma 3.2.3.Let Q be a Whitney cube oW/ ((Q2°)°) with I(Q) < % Then there is a
Whitney cub&* of Q with

1(S*)
@ 16vn (3.3)

distQ. S") < %‘l(Q) (3.4)

4yn <

and achainfS* = Sy, S,, ..., Sn = S} withI(S) > €5/10+/n and having the property that

€ 1(S))
Cn < —diSt(Q, s) <1 (3.5

whereC is a constant independent ofande.
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Proof. The basic properties of the Whitney decomposition (see Lemma 1.1.1) ensure that
there is a poink € Q such that dist, Q) < 5+/nl(Q). This point may be chosen as close to
0Q as we desire; in particular we ensure dist?) < 1(Q). Beginning from this point we
apply Lemma 3.2.2 to obtain a curyeconnectingx to a pointxs which is the center of a
Whitney cubeS with I(S) > e5/10+/n.

Consider the collection of cubes frof/(Q2) that intersecty. By Lemma 3.1.3 we
know this collection contains a chain of cubes frano S, so we need only see that there
is an appropriate starting cube on this chain and that the estimates hold. Observe that the
chain contains a cube of length at most dis#{2) < [(Q) and also a cube of lengtfsS) >
16+/nl(Q), hence by property (1.2) of the Whitney decomposition it certainly contains
one cube of length between/l(Q) and 16ynl(Q). Ordering the cubes along the chain
beginning atx we call the last cube of this leng8t. SinceS* # S we can apply the local

uniformity property (3.2) t@ € y N S* to obtain

80nI(Q) > 5vnlI(S*)

> dist(z 0Q)
S €|z — X||z — Xs|
|X — Xs]
€lz— X
>
2

so thatiz— x| < @I(Q) and therefore dis), S*) < z]I(Q)
€ €
Let{S;} be the chain fron$* to S. By Lemma 1.1.2 we know §nl(S;) > dist(S;, Q).

Itis also clear that for ange y N S;

dist(S;, 4Q) > dist(z 6Q) — VnI(S;)
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therefore applying the estimate (3.2) from the locally uniform condition in the 8pseS

6VnI(S)) > distz o)
S €lz— X||z— Xs]

X — Xs|
€
ST (3.6)
> g(IZ— Xl — IXq — X))
> g(dist(XQ, S)) - 5vnl(Q))

whereupon

12+A

€

I(S)) > dist(Q. S) - 6vAI(Q)

and using the fact th&(S;) > 1(S*) > 4/nl(Q) we have

12y

dist@.5)) < 220(s)) + 2401(@) = (s

from which (3.5) follows for all cubes bus. For the cubeS we can repeat the above

computation forz € 9S rather tharz ¢ S. All of the estimates are identical. O

3.3 Tubes and Twisting Cones

Construction

In order to simplify some of our proofs we will not work directly with the chains of cubes
constructed in the previous section. Instead we perform an elementary construction that

gives a region inside each chain on which it is easy to propagate the estimates we shall
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need later.

Let {S;j} be a chain of Whitney cubes as constructed above, with no repeated cubes. For
eachj let a; be the center of the culfg;. Also letb; be the center of the facg; N Sj.1.
Passing through these sequences of points in the aider, a,, . . ., b1, an we trace out
a piecewise linear curve At each poinix € y define a radius(x) which is%I(Sj) at each

1 . . o
X andé min{l(S;), 1(S;+1)} at eacty;, and between is given by the convex combination

(S | minll(S).I(Sp.0)
2 2
UCACRIPNCE

1-2
s(x) =
(1-2

if X =(1-2)X; + 2y
(3.7)

if Xx=(1-2)y; + AXj+1

Finally, letT" be the set of points that lie within radig$x) of somex € y. The result is

shown in Figure 3.3.

)
(90000

be
Si0¢

7]
@

Figure 3.4: The twisting cong

We record a basic property bfthat will be useful later.
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Lemma3.3.1.1fye I'n S; then
B(y.2Vnl(Q)) € S;.1US;US;s
Proof. It is clear from the definition of that all pointsx with
1 .
X =yl < 5 minl(S;-1), 1(S)). 1(S:0)}

are inS;_; U S; U Sj,1. However in the proof of Lemma 3.2.3 the smallest of the cihes

wasS* and had length at leastyhl(Q) by (3.3). The lemma follows. i

If our chain is one of those described in Lemma 3.2.1 than thE Bat radius compa-
rable to the lengths of the cubes at its ends, with bounds depending oajynpand the
constanC in the lemma. Such are calledubes

In the case that the chain connects a small cube to a large cube, as in Lemma 3.2.3, we
have instead thdt is atwisting cone The name describes the fact that the radi$ is
comparable to the function that grows linearly algngnd is equal t&(S;) at one end and

[(Sm) at the other. Like the chain that contains it, a twisting cone may contain spirals.

Counting Tubes

Motivated by the discussion at the beginning of this chapter we anticipate the need to
consider for eaclQ € W((Q°)°) the Whitney cubesS c Q with I(S) > C,I(Q) and
dist(Q, S) < C,I(Q), and the tubes connecting them. The estimates below are essentially
those in equations (3.1) and (3.2) of Jones [Jon81].

Fix C; andC, and let

F(Q) =1{Sj € W(Q) : I(S) > C41l(Q) and distE, Q) < C,l(Q)} (3.8)
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It is clear that any paif5;, Sy from 7 (Q) satisfy the conditions of Lemma 3.2.1 so we
may take a chaifT|(S;j, Sx)} connecting them and containing at m&st cubes, where

Cs = C3(e,n, Cy, Cy). As there are finitely many cubesf(Q) we have

<Cy

Z Z Pri(s;,50(X)

S;,SkeF(Q) |

Loo
whereW,(X) is the characteristic function of the skt

Further notice that the cubds(S;, Sx) all have length comparable 1¢Q) and that
dist(Q, T)) < Csl(Q). It follows that the chains arising by the above construction applied to
the setF (Q’) can only intersect those correspondingfi(Q) for finitely many choices of
Q’, and therefore that

Z Yrsiso(®)|| <G (3.9)

QeW((Q9)°) S;.SkeF (Q) |

Loo

whereCg = Cg(e,n, Cyq, Cy).

Counting Cones that Intersect a Cube

We record one other estimate connected to the discussion at the beginning of this chap-
ter. We expect at some point to have operators defined by convolution against functions
supported on twisting cones. Any estimates for these will need to take into account the
possibility that the cones overlap, and we might therefore expect to need a bound on how
many twisting cones can intersect a given Whitney cube f€annfortunately no such
bound exists, and in fact most cubes will meet infinitely many twisting cones. What is true,
however, is that there is a bound on the number of twisting cbgesith T'o N S # 0 and

with Q having a fixed scale.

Suppose for each fiiciently smallQ € ‘W((Q2°)°) we have fixed a corresponding twist-
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ing conelg. Fix S € W(Q) and letG(S) be the set of allQ € W((Q2°)°) such that
I'oN'S # 0. Since the smallest cube in the chain from whichis derived has length
eitherl(Q) or 4(Q) we see that alQ € G(S) havel(Q) < I(S). Consider thos&) with
211(Q) = I(S). All of these must lie withirCI(S)/e of S, otherwise the curve joining them
would be of length more thadl(S) and the linear growth condition (3.5) would be violated.

Within that region there are at ma&2i/¢)" candidate cube®, so we have shown

#HQ e G(S) : 21(Q) = I(S)} < C(e)2" (3.10)

3.4 Estimation along Twisting Cones

The main purpose of introducing the notions of chains and twisting cones above was to
elucidate the geometry 61 in a fashion that allows us to estimate functions by their deriva-
tives along chains of cubes. Essentially, what we seek is a Taylor expansion of a function
along a twisting cone. Since the functions we wish to apply this to will be Sobolev rather
than smooth, the error estimates for our approximations will be of the form of generalized
Poincae inequalities. In its usual form the generalized Poi@daequality holds for a ball,

and may be written as follows

Theorem 3.4.1.1f f € WKP(B(O, r)) satisfies
f Df =0 forall|al<k-1 (3.11)
B(O,r)

thenforalll < p< o

I fllLe@ory < CRMIVEILEon) (3.12)

The proof of this theorem is standard. It may be found, for example, as Theorem 6.30 in

[AF03], or as Lemma 1.1.11 in [Maz85].
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In particular we note that from anfye WP we may subtract the polynomial
PO)= > X JC D (&) dé (3.13)
a’l B

and thereby ensurf(x) — P(x) satisfies (3.11). We caR(x) the polynomialfittedto f on
B.

A standard application of Theorem 3.4.1 allows estimation of the behavibratdng
a sequence of overlapping balls. Under the assumption that the measure of the overlap for
each pair of balls is comparable to the measure of both balls, it is possible to control the
differences between successive polynomials byLthaorm of V¥f on the union of the
balls. Usually the comparison of two polynomials on such overlapping balls is done by
noticing ||P — |5||Lp(Bl) < C|P - I5||Lp(32). Unfortunately this approach is not optimal for
our problem because the bound grows exponentially with the number of cubes traversed.
For estimates along the tubes of Lemma 3.2.1 this is not an issue because the number
of cubes in the chain is bounded by constants depending on the geome€xnhotvever
there is no such universal bound on the number of cubes in a twisting cone. It is perhaps
interesting to note that using this method gives a version of Taylor’s estimate in which
If — Pl is bounded byd“*M whered is the distance along the twisting cone avids a
constant depending on the geometry. This is in contrast to the familiar gaiwththe
classical Taylor theorem. Of course it is not possible to get exaktlpr the situation
we are considering, because the increasing width of the twisting cone injplied?||.»
is taken over cubes of increasing size. If we average over those cubes as in the proof of
Lemma 3.4.2 below then the result is as expected.

Before we give our estimate for the behaviorfoflong a twisting cond’ it will be
helpful to fix some notation. Recall th&tis centered on a piecewise linear curgvand

contained in a chain of cubg¢S;}. The vertices ofy, calleda; andb; in Section 3.3 will
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here be denotefy;}. There is a radius(z) at eachz € y comparable to the size of the
enclosing cub&;. We useB; = B(z;, 3(z;)) for the balls around the vertices aRi(B;; f)

for the polynomial of degrek fitted to f on B;.

Lemma 3.4.2.Let{S;} be a chain of Whitney cubes as described in Lemma 3.2.1 or Lemma
3.2.3, and" be the twisting cone aroundin the chain as described in Section 3.3. 5@
be the radius of" at z € y, write z, and z,, for the endpoints of, andBy = B(z), S(z)) and
Bm = B(zm, S(zv)) for the balls around these endpoints.
Considerf € W¢P(Q) wherel < p < oo. If P(X) is the polynomial of degrele— 1 fitted

to f on the ballB, then

PRy 1(Sm)\""
169~ POy = CUSH YIS (§RD ] IOy (339)
=1
while for f € W (Q)
[ = PoQ| g,y < C US|V ey (3.15)

whereC = C(n, ¢, k, p).

Proof. Suppose K p < «. We begin by examining a special case that occurs along each
segment of the curve. Letk = 1 and consider the set consisting of the convex hull of the
unit ball B centered at the origin and a ball of radius{1) centered at the poirs. Use

s(t) = 1+ At for the radius at positiota along the central axis. This is a convex set, so
smooth functions are dense in the Sobolev functions (by an easy mollification argument)
and it sufices to prove our estimates under the assumptionftisdifferentiable. For each

¢ € B(0,1) we have

1
flas @+ 09 - 1@ = [ Fle+ @+
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1
= f VIi(E+ @+ 1) - (a+ 1) dt
0

from which by Jensen’s inequality and the fggt< 1

1
f|f(a+(1+/l)§)—f(§)|pd§§ff|Vf((1+/lt)§+at)|p|a+/l§|pdtd§
B B JO
1
p p
< (la + ) fo fB (at’1)|Vf(s(t)§)| dé dt

1 dy
p p
< (al+4) fo L(at,s(t)) VI (s a (3.16)

However the usual Poincatheorem fok = 1 states

f ‘f(g)— f(x)dx‘pdgsc IVE(&)P dé (3.17)
B(0,1) B(0,1)

B(0,1)

And we notice that the average bis precisely the zero order polynomial approximation

Po(B; f) = f(X) dx
B(0,1)

S0 we may combine this with (3.16) and (3.17) to obtain

1/
(j;|f(a+(1+/l)§)— Po(B; f)|pd§) i

1/p
< C”Vf”Lp(B) + (£|f(a+ (1 + /l).f) - f(§)|pdf)

1 dy 1/p
< C||Vf]| +(jJa + 4 (f f [V f(y)P dt)
Locey + ( ) o JB@tsw) » (s(t)n
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which by a change of variables is

1/p
( f |f(y) - Po(B; f)|"dy) (3.18)
B(a,1+41)

1 1/p
< CIIV flluey + (i@l + 1) ( fo fB o O (S‘g)n dt) (3.19)

If we apply the Poincar estimate (3.17) again, but this time on the Bl B(a, 1+ 1) we

have

fglf(y)— Po(B; 1) |" dy = JCB,'”V)‘JCB, f(9dx| dy

<C(1+ /l)pf IV (X)IP dx
o

and in conjunction with (3.18) we have shown

1/p
[Po(B; 1) = Po(B; )] < ( £ [Pl 1) 10) + 1) = Po(® f)|"dy)

1/p 1/p
<C(1+ ) (J[B |Vf(y)|pdy) + C(ﬁIVf(y)ldy)

1 1/p
+ (Jal + 2) (fo JCB( . |Vf(y)|pdydt) (3.20)

We think of " as decomposed into a union of sets having the geometry just discussed,
sol” = UI', wherer is the convex hull 0B(z, S(z)) andB(z.1, S(z.,1)). The estimate (3.20)

applies to each in the form

1/p 1/p
|Po(By; ) — Po(Bys; f)|s<:s(a)( B|Vf(y)|pdy) +Cs(a_1)(£ |Vf(y)|dy)

’ a4 \""
‘la- M(f f V()P dy )
71 JB(z(2) 12 = 74

1/p 1/p
sCS(ZI)( Bwf(y)wdy) +0s(a_1)(fB |Vf(y)|dy)

-1
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1/p
+Clz - 74 ( f V()P dy)
-1

and we can write

1/p

( ﬁjlfm ~ Po(By f)|"dy)

j-1 1/p
= ( fB |F0) = Po(Bj: ) + ) (Po(B; T) = Po(B; f))ipdy]
] 1=1

IA

p -1
(1160~ P 1Pay) DZCURLICRD)
2] (f|Vf()|Pd) +CZ|a . |Vf()|Pd)l/p
£ y)I"ay 1 - y)I”ay

j 1/P
7 aﬂ(f |Vf(y)|"dy)
=1 Ti1

where the last step uses the fact that

I/\

() )" Ly . J[
-7 Vi(y)Pd
z2 7] B2 IVE(Y)IP dy

[-1
< C(P)2 - 24P f V()P dy

[

s@)° fB V)P dy= (

This concludes our discussion of the cése 1.

49

(3.21)

(3.22)

Fortunately the case of geneials not dissimilar from what we have done for= 1.

We suppose inductively that for any smooth functgpand any balB = B(x, s(x)) along

the segments_4, z;] we have

1/p

( Jg 100) = Pca(By f)|"dy)
1/p
C (1)) Zla all(ﬁ IVk‘lg(y)Ipdy)

(3.23)
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and we note, by a trivial computation from (3.13), that the component6{(B; V)
coincide with those oVP,_1(B; f).

Returning to the case of a conical pieceloiith notation as before, we follow the
same method but for the functioh— P,_,(B; f) and using the above observation about
VP1(B; f). Herea = z;—z;_; andA+ 1 = 5(z;)/5(zj-1), so that we are moving on the cone
from Bj_; to B;.

£ I(F = Pca(B D) @+ 49 = (1~ Prcs(Bs D) @) e
-1
1
<+ 2P [ [9(F- P D) e+ @+ an] deat
0 Bj-1
1
~Gai+ P [ f (7 - Pea@ VD) e+ (a+ 20)0] de
0 Bj-1

1
<Clz - Zj—l|pf JC [(VF — Piea(B; V) ()| de dt
0 Je@tisa)

whence by our inductive assumption appliegjte Vf, and using thaat € [zj_4, zj]

1] 1/p]P
< Clz; = 2j1 Pl (y)) 2P f [Zla—a_ll(f |vk—1g<y)|pdy) } dt
0 =1 ]

j 1/p]P
< Cl(y)*Plzj — 4| [Z 1z 24] ( f Ika(y)lpdy) } (3.24)
1=1 [i-1

since the integrand is no longer dependent.dfife use this to write

1/p
( Ji 1(f = Pea(B; 1)) (y)l"dy)
1/p
- (JCB |(f = Pa(B; ) (a+ ﬂf)lpdf)

1/p
< ( f 11(€) = Pa(B: f)(§)|pd§)
Bj-1
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i 1/p
+CI0)* Pz~ 21l ) 12 - 2] ( f VEE(y)IP dy) (3.25)
I=1 !

It is clear from inductive application of (3.25) and a single use of the Pcénicaquality

that

1/p
( f (F = Pea(Bs ) (y)|"dy)

1/p
< ( 110 - P f)(§>|pd§)
' m i 1/p
+C ) 100 PNz -zl ) l2 -~ 24 ( f VEF(y)IP dy)
=1 I=1 !
1/p
< C(s(zl»k( f |ka(y)|pdy)
B
m /p( m
+c2|a—a_1|(f |ka(y)|pdy) [Zl(m)(k—2>|z,-—zj_1|]
I=1 i =1
<6 Sia - f
=1 Y

Comparing this to (3.23) and using the base dasel established in (3.22) we see that

1/p
|ka(y)|pdy) (3.26)

-1

(3.26) is true for alk.

It is not difficult to pass from (3.26) to the desired estimate (3.14). Thel$edise
contained in cubes of the chdi;}. If I'NS; # 0 then|I'}| and|S;| are comparable and the
length|z — z_4| is is comparable t&(S;). Moreover the lengtii(y;) is comparable ti(S;)
with a constant depending @ because the length of a subarcyofs comparable to the
separation of the endpoints and we know (3.5). Multiplying both sides of (3.2B.YyP

and rewriting the bound in terms fS;) we have

. i 1(Sm)
If = Pea(B, f)”'—p(Bm) <C(S)" 12 I(SJ')(I(SJ')

=1

n/p }
) IO
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This concludes the proof for the caseIp < co.

Whenp = oo the argument is considerably simpler. We use a well known consequence
of the Sobolev Embedding Theorem, namely that W*P(Q) has a representative for
which V&1 f is Lipschitz on balls contained 2, with Lipschitz norm||V¥f|| <. Inte-
grating V¥f along a rectifiable curve will then give bounds for lower order derivatives as
is usual in Taylor's Theorem. As the uniform domain condition ensures thak amgy
with [x — y| < ¢ are joined by a large number of rectifiable curves of length not exceeding

C(e)Ix - y|, we conclude immediately that

|(F(¥) = Po(x)) = (f(y) = Po(y))| < Cle, K)Ix = yIV*f [l

This implies both thaltf (x)— Po(X)| is bounded by|[V* [ I(So)* on By and that f (x)— f (y)|
is bounded bYC||V¥f||I(Sm)X for x € By andy € By, so (3.15) follows and the lemma is

proven. O



Chapter 4

Moments and Kernels

In this Chapter we construct the reproducing kernels needed to define the op&gafiors

each Whitney cub® from (Q°)°. The critical feature of the kernel correspondingJas

that it should be supported on a set that is in some sense “ne@;’yet we have only a
limited amount of control on the geometry of such sets. Nonetheless we will see that the
twisting cones constructed in Section 3.3 are large enough to support reproducing kernels

for polynomials. Our main result is

Theorem 4.0.3.LetR > 0 andn < 1 be fixed constants (which may be thought of as the
initial radius and the angle of a twisting cone). If ¢ R" has the property that for every
r > Rthere isx with |x| = r and

B(x,n|x)) cT 4.1)

then there is a smooth functidf(x) supported oii” and with the properties

1 if a=(0,...,0)
fx"K(x)dx: (4.2)
- 0 if aeN"\{0,...,0)

C 1, x\"% 1, )\
[K(x)| < |X|mexp{— (5 log C_z) exp| 5 IogC—2 (4.3)

53
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whereC; = Cy(n,n,R) andC; = Cy(n, n, R).

We prove this theorem using a lemma which describes the desired geométniy of

rather more detail.

Lemma 4.0.4. For fixed constant§ and j, let {r;} be the sequence
rj = T exp[2log?(j + jo)|

Fix also a constant, and suppose thdt c R" has the property that for eachthere is a

setZ; c S™*! of the form

E; = S"n B(éo, ) (4.4)
with
X
{x: ry <Ix <rj1and M € Ej} C (Fm {x:irj<Ix < rj+1}) (4.5)

then there is a smooth functidf(x) supported onl” which has the property4.2) and

satisfies the estimatd.3) with constantC; = Cy(n, t, jo, T) andC, = Cy(n,t, jo, T).

Proof. We prove the lemma implies the theorem by showing that the assumption (4.1)
implies there are values ¢f andT depending ok andn such that the geometry dfis as
in Lemma 4.0.4 witht = /2.

If we can be certaimy > R, then irrespective of the specific values jgfand T, the

condition (4.1) ensures that for apyhere isx; with |x;| = (r; + rj;1)/2 and
Fi+r
B(Xj, W) cr

which in turn implies that for alt € [r;, r.1] there are slightly smaller balls at radiughat
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also lie inI". To be concrete:

2\ (1)

x 1
B(fm, E(Uz(rj + 1)’ = (N = 1))?) ) - B(XJ’ 5

It follows immediately that we may take

[x1

J

_ x 1 1/2
s™n B( (720 + 102)? = (s = 1)) )

X" 2rj1

and have condition (4.5) with= n/2, providing only that for all

12
(P +rja)? = (s —1)?) 7 >

NI

2rj+1

which is the same as

2 2 2 2.2
n (rj + rj+1) - (rj+1 - rj) 21 rj+;|_

Now if (2 — n)rj.1 < (2+ n)rj we obtain

and therefore

N+ 1) = 2(0j41 — 1)

2 2
T]Z(rj+1 + r,-) > 4(rj+1 - r,-)

3
2 2
o+ )" = (P —1y)% > zﬁz(ri + 1)

3( 4V ,,
> S| ——| nr?
_4(2+77)]7 J+1

2.2
Z 3T

55

(4.6)
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So a stficient condition for (4.6) is

from which it sufices that

exp[210g(j + jo + 1) -~ 2106%(] + jo)] < o
2-1

4.7)

We pause to notice that the derivative(tafg?(x + 1) — log? ) is

2log(x+ 1) B 2logx
X+1 X

so that(log?(x + 1) — log? x) is decreasing fox > 1. Moreover

log?(x + 1) — log® x = (log(x + 1) + log x)(log(x + 1) — log X)
= logx(x + 1) Iog(l + )}()

< ;1( logx(x + 1)

from which we conclude the limit dlog®(x + 1) — log? X) asx — oo is zero.

It follows that

exp|2log’(j + jo + 1) - 210g(j + jo)| < exp[2log(jo + 1) — 210g?(jo)
L 2*n
2-7
providing thatjo is suficiently large. This establishes (4.7) and therefore (4.5). All that
remains of the proof is to set

T = Rexp[-2log? o]
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so thatrq = Rand the above reasoning is valid for gl |

Most of the remainder of this chapter is spent proving Lemma 4.0.4, though we first
discuss a little of the history of theorems like Theorem 4.0.3. This theorem belongs in
some sense to the theory of moments, but does not seem to have attracted a lot of attention
in the past. Indeed the only previous results are for sef®, ia situation in which the
geometric condition reduces to a near triviality. In Section 4.2 we present an approach to
this one-dimensional problem which does not appear in the literature, and which has an
additional property that is useful in establishing the result in higher dimensions. Section
4.3 is devoted to the construction of certain functions on thezetsS"™* and in Section

4.4 we complete the construction §{x) and the proof of Lemma 4.0.4.

4.1 Historical Remarks

The problem addressed in Theorem 4.0.3 requires finding a function with specified mo-
ments, support in a given set, and controlled decay. A special case is obtained when we
restrict to the the one dimensional situation and take the set to be the half,ling 1R,

so that we seek a functidfx) with

o 1 ifj=0
f X'k(X)dx = (4.8)
! 0 ifjeN\{oo)

In this form the problem belongs to the classical theory of moments. Early questions in the
study of moments focused on whether a given sequence arises as the moments of a function
or distribution, usually assumed positive, on a particular set. In particular we mention the
Hamburger, Stieltjes, and Haus@tamoment problems, which ask precisely this question

on each of £, x), [0, 0) and [Q 1] respectively. A complementary problem is whether
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such a moment sequence is unique, or equivalently, whether there is a non-zero function
f(x) all of whose moments are zero. By settifix) = xk(x) we see that on [Xo) this is
the same as asking for a solution to (4.8).

The observation that (4.8) is equivalent to the uniqueness problem for a moment se-
guence immediately provides some limitations on the properties a sokfkpcould enjoy.
For example the Weierstrass approximation theorem ensurdgxhaannot be compactly
supported, while the density of the Laguerre polynomials qgroOwith the weighte™
implies thatk(x) cannot decay like . Nonetheless, in his seminal works [Sti94a, Sti94b]

on continued fraction and moments, Stieltjes gave the following explicit example

e « . dr
f rksin(2rlogr)e ¢ " dr = f g (097 (12" k-1)*/4 gy (2 [og ) -
0 0

0 k-1
(k14 2 i
—d Lx, g sm(27r(u+ T)) du

=0 forallkeN
since sin(zZu + n(k — 1)) is an odd function. We observe that the function
sin(2rlogr)e'o9’"

has slow exponential decay.

Later work established bounds on the possible decay rates for functions of this type and
produced various methods for their construction. We mention for example the criterion of
Carleman for determinacy of a moment sequence (see [Car26]) and the example given by
Hamburger in [Ham19] of a function with zero moments. For these and other diversions the
interested reader is referred to the standard texts [ST43] and [AK62]. This is a vast theory
and we cannot even survey the interesting results here. Instead we present an approach

using the calculus of residues which may be found in [Ste70], Chapter VI, Section 3.2.
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This is the method used by Stein to give the example mentioned in (2.10) of Chapter 2.

Consider the domaiB = C \ [1, c0). The function
x(2) = exp@**(z- 1))

is well defined and analytic oB and has a jump discontinuity alodp = [1, ). Let
v be the closed, positively oriented contour consisting of the circular arc around 0 joining
R+i6to R—i6, two line segments on= +id, and a semicircular arc radidgsaroundz = 1.

Applying Cauchy’s theorem we have

— ifl=-1
fi)((z)dz: e
4 0

otherwise

Notice thaty(z) has well defined limits from above and below the lingcp). From above
it converges to ex@®/4(x — 1)4) and from below to ex@"*"/4(x — 1)4). Sincey(2) has

rapid decay we may take the limit &— oo thens — 0 to find that

27i
f X exp(e¥/4(x - 1)Y4) dx - f X expie®/4(x — 1)Y4)dx={ €
1

! 0 otherwise

ifl=-1

from which it follows that
K(X) = — Im(exp(e®/4(x — 1)%))
X

has the desired moment properties. It also has much faster decay than the example given
by Stieltjes, since

(4.9)

lk(x)| < Cexp (_(r_—l)lm)

V2
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It is perhaps worth commenting on the fact that the above function may be transferred
to a radial line from the origin ifR" and will retain the same moment properties. This not
only leads easily to the construction of a similar function supported on a cone with vertex at
the origin, but also leads us naturally to wonder whether the elaborate geometric conditions
required in Theorem 4.0.3 are truly necessary. With the information we have available thus
far there seems reason to hope we might construct the desired functions simply on curves
in R". The following elementary example shows this is not the case.

ConsideiR? with co-ordinatesx, y) and the line segmentgiven byy = 1, x € [1, o).

This is as trivial a modification of a radial line as we might imagine, yet if we $&eky)
ony with the moment condition (4.2) we are doomed immediately, because we have asked

for both
f K(xy)=1 and f yK(x,y) =0
Y Y

which is incompatible witly = 1 ony. A slight modification in which we ask that(x, y)

be supported on the sgt— 1] < ¢, X € [1, ) looks to be close to extremal, in that we
might expect the size oK(x,y) to be in inverse proportion te. Such a set would be
much smaller than the sEtof Theorem 4.0.3, so this further suggests the conclusions of
that theorem are not sharp. This is indeed the case, and it is even possible to refine the
conclusion of the theorem using only the techniques we will develop during the rest of this
chapter. Such sharper results do not, however, improve our understanding of the original
Sobolev extension problem, so they are not included here.

Building a kernel satisfying (4.1) will occupy the remainder of this chapter. With only
the geometric information in (4.1) it is a far more technical task than the construction on
[1,00). In particular none of the methods from complex variables appear to be helpful in
this situation. It should be apparent from théidulties we encountered on which was

simply a translation of our well-behaved radial line, that neither the classical integration
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tricks nor conformal mappings are compatible with our geometric constraints. Neither are
the many techniques for moment problems in higher dimensions applicable on the sets we
consider. For this reason our approach to proving Lemma 4.0.4 begins by re-visiting the
one-dimensional case we have just discussed, this time with the goal of constructing the
functionk(x) in a manner that allows us to break Lipnto distinct intervals in the radial
direction. Using this we will proceed in Section 4.3 to deal with the angular variables on
sets of the form described in (4.5). These will combine naturally to give the construction

of the desired kernel in Section 4.4.

4.2 Moments on[1, o)

We work on the half-lind = [1,0) c R. Let{r;}2, be an increasing sequence of points
from |. We considert, o) c | to be partitioned into the interval$ = [r}, rj.1). Our first
goal is to construct smooth functiopg which have a finite number of vanishing moments
and which are supported on the intervglsFrom the functiong;; we will then inductively
construct a functio® satisfying (4.2). This will require knowing estimates for the higher

order moments of thg;.

Some Building Blocks

Consider for each € N, j # 0 the function

oF exp(ﬁ) se(-11)

0 otherwise

xi(s) =

whereC; is chosen so tha,f)(j = 1. Forj = 0 setyq = ¥;. Itis clear that these functions

are C* on the real line and are supported cfil[1]. We note for future reference an



CHAPTER 4. MOMENTS AND KERNELS 62

elementary estimate d;. Observe that our functions decay monotonically as we move

away from the origin and therefore that

[ostzg)oss ool

2

S exp(—_‘”)
- 3

Nl

whereuporC; < €3,
We usegp; to denote the function obtained by translating and scafing the interval

I such thatp; is C*, supported orj and hasfgb,- =1.

2r 3 M+ + rj) (410)

#i0) (rjp1 = rj)XJ (rj+1 =TIy T =T
Now we make our main definition for this section. Thh building block function,
supported on the interva), is
_ D4y
00 =5 ) 40 (4.11)
This definition is related to the classical Rodrigues formula for the Legendre polynomials.
As in the theory of orthogonal polynomials, its practical application comes from the ease
with which we may calculate the momentg, of ¢; using integration by parts. In the
following computation we dferentiater® and integrate;(r) as many ag times, noticing
that at each stage the boundary terms vanish because they are multiples of derivatjves of

at the endpoints df;.

pii= [ sty dr
|

j
:(_1)jj_1!j|:rk(%) ¢i(r)dr
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-1
:(—1)1‘1%[r"‘1(§) ¢i(r)dr

ok(k— 2
= (_1)1—2(T1) [ k-2 (g) ¢j(l’)dl’

0 ifk<j

=11 ifk = ] (4.12)

(Ij()frk‘jcpj(r)dr if k> j
lj

At times it will be useful to change variables back to the intervdl [L], in which case we

have the expressions

0 ifk < |

Hik =41 if k=] (4.13)
k rj+1—rj)k‘jf1( rj+1+rj)k_j . .

N S+ —— i(s)ds if k>

(J)( A e G j

for the moments of;. We also record from (4.12) that

k\ ._;
ljud < (j)rjﬁ; (4.14)

Bounds for the building blocks

As our construction will involve adding and subtracting multiples of the functignswill

be important that we know how the° norm ofy; depends or).
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Lemma 4.2.1. The functiong; satisfy

i ()l < ( )J+l (4.15)

Fiv1 =T

Proof. Inserting the definition (4.10) into (4.11) and noting that the change of variables is

linear we have

o= (3] (2 taen)

it (rjpa—ry) \dr Fea =T T =T

1 1 g0\
= ( _1)1( 2 ) (dgs) xi(9) (4.16)

J! (rj+1_ rj)

and we see that it $ices to know a bound for thth derivative ofy;.

Rewriting the definition of;(s) as

xi(s) = C; exp(sz#._l) =C; exp(z(sj_ 1))exp(z(s_j 1)) (4.17)

we may proceed by fferentiating the product to obtain

o (g v~ S orlae) () oolast)

It is elementary but tedious to obtain bounds for these derivatives. Consider the terms that

arise when we expand using the Leibnitz rule

(oelaeo) -6 (e ool

It is clear that at all stages of the computation, the terms in the expression tfidyerdi-
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ated are products involving ¢ 1) exp(j/2(s - 1)). We compute

dgs[(s—1 1) exp(Z(sj— 1))] i} (s—_l)'ﬂ exp(z(sj— 1)) e jl)'+2 exp(z(sj— 1))

Grouping such terms according to the homogenkiye notice that the derivative of a
term with homogeneity consists of a term of homogeneity 1 with a factor-1 and one
of homogeneityl + 2 with a factor—j/2. This allows us to describe all terms that arise
in computing thek-th derivative. There are a total of2 terms, naturally grouped by
homogeneity. Indeed, the homogeneity of a term depends on the patteffecdémtiations
that produced it. If of these fell on the powers o8¢ 1) and k — I) on the exponential
factor, then by the above observation the resulting term has homogeneity 2( = 2k—1.
There ar&{kT 1) terms of this homogeneity and it is easy to deduce that thiicieats of
each contain a factor of-(/2)<"' from differentiation of the exponentials. The @idgients
obtained by dterentiating the powers are harder to write down precisely, but it is easy to
see that none is as large a&)2

Now we need to estimate the size of a term with fixed homogeneity. As there is a trivial
estimate on41, 0] we look for the maximum on [A). Observe that for a positive value of
2k -1

j
2(s-1)

log = —(2k—1)log(1-9) +

iIo
ds 9

(s—ll)Zk-' eXp(Z(sj— 1))‘

1 i\ (- j
(5= 1) eXp(z(s— 1)) T -5 2(-17

so that this expression has a unique critical point iL)Cat j/2(s— 1) = —(2k = 1). It
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follows that we have the bound

2k—I
J- (2(2.(_')) if 22k = 1) >
) <

je
(s— 12! exp(Z(s— 1)

el if2(2k - 1) <

where these maxima occur at the critical point and at O respectively.

66

(4.18)

Combining the above estimates we have bounds of the type needed in (4.17) on the

interval [Q 1]. It is an unfortunate consequence of the dichotomy in (4.18) that our bounds

are diferent for diterent ranges dk. The simplest is that fok < j/4 where the second

estimate in (4.18) must be used and we have

(semlzaol == 5 e )

1=0

k—I

HINLS
< 2ok 1)
- 2

< gliZjk

For the situation in whiclk > j/2 — 1 we have R - j/2 > k— 1 > | and therefore the first

estimate in (4.18) is used. This gives

‘(dis)kexp(asj— 1))

IA
— I
R ©
=~
TWMT —
~ O -
—_ —_ ~—
=
— |
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Finally there is the casg/4 < k < j/2 — 1 which appears at first sight to require a combi-

nation of these estimates, but for which we merely use both of the above

(elzstm| <) 2 (4 Yoo )

L= S j
ir2 2K)' (5
e |:;_,-/2( | )( )(2)

ay ij2:k
<C T +e J

k-1

This final estimate is then valid for &l

In order to finish estimating (4.17) we need to know something about the behavior of
the terms involving ¢ + 1) rather thang— 1). These, however are easy. The pattern of
differentiation is the same as for the< 1) terms, but on [01] all the resulting terms are
bounded by1/? because negative powers sfl) are trivially bounded by 1. We conclude

by the same method as above that

‘(dis)j_kexp(Z(si 5 <

and can finally put all of our calculations together to conclude that

( )-X‘(S) Z()( ) (2(sj 1)) (E)"‘kexp(z(;‘l))

Sl Sl

k=0 k=0

e i2jD

-1
C

[ j K\
ila=i/2 KIZ2] j2k-D) jaijl
<J'e kZ:(k)C (J) ] +2'e’’]j
| k=0
1,
< ey (o] s e
| k=0 K
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< jlei?(C+j?) + 2]

< jlel(e2(C+ 1) +2))

Substituting into (4.16) and using Stirling’s formula to estimgite> jle \/2rj we

have at last

Cjjle’
Wil < ——=
wi(r) jleﬂm(

( C )j+l
<
Fv1 =T

where we used the estimalg < €*//3. It is easily verified that we can take= 20. This

j+1
@?(C+1) +2) (—2 )J
(rj+1 - rj)

proves the lemma. m|

Construction

Our goal is to construct a function on, gb) that has all its moments vanish except the one
of zeroth order. A natural method to attempt is to begin wighand inductively subtract
constant multiples of the functions for j > 1 so as to cancel each moment in turn. The

induction is as follows
e The function before thg-th stage of the induction is callet;. We set¥, = .
e The moments o¥; arealj( = flr"‘I’j(r) dr. Itis then clear thad = pox.

e The j-th stage of the induction is

-, I
Vi =" - aj+1wl+1
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from which it is clear that the moments ¥f., are given by
a1j<+l = a1J< - ai:+1:uj+l,k (4.19)

Observe thaaj:ﬁ = 0 becaus@j,1j1 = 1. Sincey; j.1 = 0 foralll > j + 1 it follows that
(4.19) is actually
1 ifk=0

j+1

& =140 ifl<k<j+1

al-al . ifk>j+1

as was intended. Eaah is supported on the intervé] and these intervals are disjoint, so
it is apparent that to prove the;(r) converge all we need do is estimate the numb%rls
and use our estimates on the functigns For this purpose we define a sequetmie by
settingb? = || = |uoxl and

bl = bl + b, luja1d (4.20)

Itis clear thatal| < b? for all k. Assuming inductively thae] < b! we have

j+1

R

| < lagl + &y, jr1lije ik
j j )
< bk + bj+1lu]+1,k

= b} (4.21)
and henceforth need only consider the sequéln}gg}.

Estimates

The essential idea is that binomial factor in the causes terms to increase very rapidly as

j andk increase (withk > j). This implies that at any stage of the induction the dominant
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terms will be from the moments of the most recently introdugedwe do not show this
explicitly because the only estimates we need are those for the nubjpleﬂsowever itis

the underlying philosophy of what follows here.

Lemma4.2.2.For j > 1andk > j, the momentg; satisfy

Hi-tk  _ 2
Hi-Litix ~ K=j+1

(4.22)

Proof. We may explicitly compute the term_; ; to be

(] (r,-—r,-_l)fl TRAITL I
Hj-1 _(j—l) > . S+ -1 Xij-1(s)ds
_j(rj—rj_l)(rj+rj_1)
2 ri—rija

using the fact thag;_1(s) is an even function on{1, 1].

Using the symmetry of;(r) around the midpoint of; and the fact that*’ is an

increasing function we have the bound

k .
=) [ oy

J

=N
> .|l —
J 2

and we make a similarly trivial estimate pn , using the upper endpoint of the interval:

. _ k k—j+1 4
Hi-1k = (j - 1) flj_l r g (r) dr

< K pkoi+l
<\j-q)f
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Combining these we have

( Kk ) k—j+1

. r

Hi-tk  _ j-1)!

Hi-vitik (K (fj +rj—1)(fj+1+|’j)k‘j
Nil\T=2 2

1 2r; 2r; \¢!
B —j+1 rj+r,-_1 r,-+1+r,-
2

K
< :
k—j+1
O
Lemma 4.2.3.The sequencb}+1 satisfies
b}+1 < ezbj:_llluj,jﬂl
and hence _
j
bl <& [ [l (4.23)
=0
Proof. We expandnlj(+1 using only its definition in (4.20)
by = bl + b, lujad
= b|j<_1 + bi:_l|/1j,k| + b}+1|,uj+l,k|
= by + bl + baluaid + -+ + b}+1|,uj+1,k| (4.24)
= |uox] + bfluail + b3luzid + -+ + bl i1l (4.25)

and see that we must deal with a sum of terms of thebty/pg «|. Again from the definition
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in (4.20) we have

b:_lllll,l+l| = b:+1 - blj < I:):+l

and using this in conjunction with the inequality (4.22) from the preceding lemma we

obtain forl > 1

bl e < by el 1l (—)

K1
2
< b:+1|,uI+l,k| (m)
inductively
. 2j—|+1
J )
< Bpaaltiond ((k )T ) py j))

while for the first term in the sum (4.24) we begin directly with the estimate (4.22) and are

then in the same case as before

2
lokl < (E) |to,11l1e1 kl

2
= (E) b3lkerul

| 2j+l
< bj+l|/.lj+l,k| (k(k _ 1) e (k - J))

Now we need only substitute into the sum (4.24) to find (witk: j — )

j +1 i
L 2™k - j - 1)!
b, < bl lujad (1 + Z (k= j+m)!

m=0
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and in particular

j+1 j J 2m+1
bi.; < by lujejal |1+ Z (m+2)!
m=0 )

. 122 o
< by kel [1 t5 ; E]
€+1
< Tb}+1lﬂj+l,j+2|
which proves the first assertion of the lemma. The second follows from this inductively:
bl,, < &bl judl

A2
<€ bj_lluj_1,1||ﬂj,j+1|

< bfuaalluaal - - Ikl
j
= ¢l l_[ 7
10

where the last step uses thgt= |uo1| by definition. m|

Properties of ¥(r) = lim ¥(r)

Recall that the function¥;(r) were defined inductively by
Wo(r) = o(r)  Pjua(r) = ¥i(r) - al, . (r) (4.26)

The functionsyj(r) are defined on the disjoint intervalls so it is immediate that thé/;(r)
converge pointwise to a functidk(r) onl. We wish to know that this limit function decays

suficiently fast that it is integrable against all polynomials, and to know that its moments
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are those obtained as the limits of the moments ofith@). To this end we employ our

estimates for the functions;., and for their coﬁicientsa}ﬂ. By (4.21) and (4.23) we have

_ _ o
jal,y < bl <[ [lual
1=0
however from (4.14) we know already that

[ eal < (1 + L)y

and so

| | i
lal,,l <&+t [n
1=0

Multiplying this by .1, a bound for which we found in (4.15), we have

-0 (M2 = Fjs1)

- . j 20 \*?
) gl < €1 + 1) (]—[ r.] (=) @.27)

and we see that this depends on our choice of the seqiighce
It is not hard to discover that the rate of growth of the sequéngedetermines the
bounds available from (4.27). A close to optimal choice ;a6 the sequence described in

Lemma 4.0.4

rj = Texp|21og’(j + jo)] (4.28)

for which case we record an estimate that is useful both here and in Section 4.4.
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Lemma 4.2.4.With{r;} as in(4.28)and j, > 8 we have

= 20 \*!
J! [IZO rl)(m) (4.29)

< exp(C + 2jolog?(j + jo) — 2(j + jo) log(j + io)) (4.30)

Proof. For notational purposes it will be convenient for us to work with the logarithm of

the above quantity. The relevant estimates are

s =1y = T (eXp(210G(j + jo + 1)) - exp(2logf(j + jo)))
= T (exp2log’(j + jo))) (exp210g7(j + jo + 1) — 210 (j + jo)))
> T (exp(2log’(j + jo))) (210g’(j + jo + 1) - 2log(j + o))

so that

log(rjs1—rj) > logT + 2log?(j + jo) + log 2

(log(i + jo+ 1)(i + o)) (Iog(1+ J. 1 ))]

+lo
J + Jo

>logT +2 Iogz(j + jo) +log 2+ log(2log(j + jo))

1
+loglog| 1+ —
J g( J+J)

0
>logT + 2lod?(j + jo) + log 4+ loglog(j + jo)

ng)
j+ o

+ Iog(
> logT + 2l0g?(j + jo) + loglog(j + jo) + log(4log 2)

- log( + jo) (4.31)
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and for the product term

j-1 j-1
Z logr, = jlogT + ZZ log?(l + jo)
0 0
j+io
sjlogT+2f log® x dx
io
= jlogT +2(j + jo) log?(j + jo) — 4(j + jo) log(j + o)

+4(j + jo) - 2jolog® jo + 4jo10g jo — 4jo (4.32)

Combining (4.31), (4.32), and the Stirling Estimate< c+/jj'e produces

= 20 \*
J!(l:o[rl]((rju—rj))

<logc—j+(j+1/2)logj+ jlogT +2(j + jo) log*(j + jo)

log

—4(j + jo)log(j + jo) + 4j — 2jolog?® jo + 4jolog jo
—(j+1)logT - 2(j + 1) log?(j + jo) — (j + 1) loglog(j + jo)
- (j+1)log4log 2 + (j + 1) log(j + jo)

< logc + 2jolog®(j + jo) — 2(j + jo)log(j + jo)

becausej, > 8 > €. Inserting the constant for the Stirling estimate we obtain the

conclusion of the lemma wit8 = log( V2re). ]

The lemma applies directly to (4.27) to give

log(la]™| 1) < 2j + 2jolog?(j + jo) — 2(j + jo) log(j + jo)

<=(J+Jjo+1)log(j+ jo+1)

for all sufficiently largej. By (4.26) and the fact that only the only non-zefmon | is yj,
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this is a bound fop#(r)| on the interval ; = [r},rj.1). Using logr < logT +2log?(j+ jo+1)

on this interval we see that
1 r 12
log(j+ jo+1)>(=log=
og(j + jo+ )_(2 OQT)

which gives us at last that for all ficiently large values of

1 r\"? 1 r\"?
log|¥(r)| < — (§ log ?) exp(é log ?) (4.33)

This is certainly sfficiently rapid decay to ensure integrability against the polynomials,

and an application of the dominated convergence theorem shows

1 ifk=0
frk‘P(r)dr = lim fr"‘I’(r)dr = (4.34)
‘ 0 ifk=123,...

so that we have found a function of the desired type gpo)0 Our construction is cruder

than the complex variable method used by Stein, so it is not surprising that we have paid
a price in the decay rate &f(r). We saw already in (4.9) that the method he used gives a
decay rate like

—(r - 1)v4

log |K(r)| < <-C exp(% log r) (4.35)

which is clearly better than (4.33). In compensation we have gained substantial control

over the regions in which cancellation occurs for individual monomials.
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4.3 Kernels on Subsets of Spheres

In addition to our collection of kernels selecting for the radial growthwe need func-
tions that can distinguish between the many monomials that have this rate of growth. For
example inR? we need to be able to treat, xy andy? independently, yet all have the ra-
dial behaviom?. We achieve this by constructing functions on a fixed subset of the sphere
S™1 ¢ R" with the property that they vanish for all monomials except the specific one
desired. It will be convenient in our construction to work with angular variables rather
than the restrictions of monomials 851, so all our results are stated with regard to these
variables. We see in Section 4.4 that this iffisient for our problem.

The construction will be carried out first for an @oon the unit circle. It will then be

a simple matter to extend to the case of a suBsetS" .

Functions on an Arc of St

Lemma 4.3.1.Let® be an arc of length®| in the unit circleS!. For a fixedJ € N and for

eachl € Z with |l| < J there is a smooth functio, () with support in® such that

, 1 ifk=]l
f 1 Gi(0)e’ do = (4.36)
S 0 if|kl<Jandk # I

and which satifies the estimate

23+2
IG(0)] < (|CE|) (4.37)

Proof. The Riesz representation theorem guarantees that thei®,(8)avhich is itself a
trigonometric polynomial of degre&, hence it is reasonable to begin by solving a dis-
cretized version of the problem which construGisat 2] + 1 points. This will lead easily

to a construction 06,(6). To simplify notation we begin with the case- 0; the general
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case will be seen to be similar.
We partition® by the points{Ao, ..., 125} wheredg is distancg®|/(4J + 2) from one

endpoint of® andaj,; — 4; = |0]/(2J + 1). The discretized problem is then to find numbers

a; such that
2J _ 1 ifk=0
Z a, i = (4.38)
j=0 0 ifl<|k<J

Observe that the right side of this equation has a familiar interpretation from the calculus

of residues which we record as

1 1 ifk=0
> f e dg = (4.39)
0 0 ifk#1

We use Lagrange interpolation to express the integeffich terms of the points ;. Writ-

ing z; = €4 we define
2]
Z— L
P@=|] -

keokej 0 T

The fact that a polynomidD(z) of degree at mostRis determined by its values a2 1

points allows us to write

2J
QD = ) AZ)P()
j=0

In order to apply this to our integrand we £gz) = Z2€*?, which for|k| < J coincides with

a polynomial of the appropriate degree on the unit circle, where we conclude

2J
o9 _1 >, QZ)Pi(2)
j=0

AR .

2J
— g Z g3k, Pj(eig)
j=0
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Now integrating both sides ovére [0, 2x] yields as in (4.39)

2 1 & 1 ifk=0
S gy (27 | Pj(é")e‘”de)z
j=0 0 0 ifl1<lkl<J

whence comparison with (4.38) yields an explicit formula for the vaajes

eiJ/lj 27

a; = Z . Pj(ée)e‘”de (4.40)

Using the above solution to the discretized problem we may prove the lemma by trans-
lating the set of pointst; within the interval® and integrating the resulting functions
against a smooth cufio By our choice ofl;, the pointséi*® are all in® for ¢ €
[-1©]/(4J + 2),10|/(4d + 2)). Moreover all points 0f® (except one endpoint) may be
uniquely described ag'i** for someg in this interval. Using the procedure described
above, but replacing the partitida;} by the translate§t; + ¢}, we obtain for eaclp

[-1©1/(43 + 2),|0]/(4J + 2)) a set of numbera;(¢) such that

2J , ifk=0
Z aj(¢)e'(’“+¢’)k _
=0 0 ifl1<lk<J

If we now take aC* functionn(¢) supported on the intervgh|@|/(4J + 2),10|/(4J + 2)]
and such thaf = 1 we find that

2 ~O|/(43+2) _ 1 ifk=0
f ay(¢)e"i* () dp = #.41)
o0 J-101/43+2) 0 ifl<ikl<d

This gives a natural definition of our functi@(6). Write6 € @ in its unique formg = Aj+¢
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as decribed above and set

G(6) = aj(¢)n(4) (4.42)
It then follows from (4.41) that

2J

iko _
f@ G(o)e  do = >

j=0

1j+101/(43+2) _
f G(6)€*’ do
2

i—101/(43+2)

©]/(43+2)

2J
> [ s s
0 V-

|®]/(43+2)
1 ifk=0

0 ifl1<lkl<d

We now have a functioi(¢) which satisfies (4.36) for the case= 0. As earlier
mentioned, the construction is not substantiallifedent for generd. We merely replace
(4.39) with

1 = 1 ifk=1I
Ef ék@e—lledez
0 0 ifk=I

and in later instances of integration with respectifowe instead use"?dg. In order
to simplify the derivation of the estimate (4.37) we record the precise definiti@)(6J.
First note that when we construct the Lagrange interpolating polynomials for the partition

{1; + ¢} we obtain

2J

z— €%z
Pis(2 = S —.
k—l;J#j ez; - ez

= Pi(e’2)
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Now we have from (4.40) that

elire) - 2 i(0—4)\ o (3+1)0
a)(9) = — P;(€-")e " dg
and therefore
R i(0-9)y - (3+1)6
G(e) =—— | P e dan(y) (4.43)
0
whence
2n
|G|(0)|§% fo IP;(é")| da (4.44)

Sincen(¢) is simply a smooth cutd function on the interval—|®|/(4J + 2),|0|/(4J + 2)]
it is easily seen tha#(¢)| < C(2J + 1)/|0| and we are reduced to estimatiRg This too is
simple, because the all of the terms in its numerator are bounded individually by @rior

the unit circle and the denominator is clearly largest for the ¢gasd + 1 when

2J+1
1

2
(z-2z)= 12.22.3%... )2
k_l;lqtj 4] + 2

2J+1
1

= 12
4] + 2 (91

|®| 2J+1
4]+ 2
Ie] )2J+l

> 2re| —
> 2re(

> 27TJ2J+le_2J

where we used thatl > V2rJJ e andJ/(2J + 1) > 1/3. From these and (4.44)

C(ZJ + 1) (1_2e)2J+1 - ( C )2J+2

G(9)| < —
GO <~ zaar o O]
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thus establishing (4.37)

It remains only to see th&,(0) is smooth, however we have the formula (4.43) which
gives G;(#) explicitly as a product of smooth functions on the intervals— |©]/(4J +
2), ; +10]/(4J + 2)). At the points where two of these intervals meet we seerjfggtand

all its derivatives are zero, therefore the same is trug, ().

Functions on a subset o6"1

Consider the unit sphe®"! c R". We use the notatiofiec S"* for pointsé = (&1, ..., &)
with Zgj? = 1, anddo for the usual f — 1) dimensional measure normalized to have
unit mass or8"1. We also define generalized spherical coordinéies, . . ., 6,1 where

0j € [0,n] for all j < n—1andd,_, € [0, 2r) according to the pattern:

Cc0Sso, if j=1
&= qcosf; [/ ising,  ifl<j<n (4.45)
1 singy if j=n

and will move freely between the notatigrand @4, .. ., 6,_1) for points ofS"™1. Note that
the Jacobian on the spherejs= E;f sin*1g,.

A subsete c S"1is called amangular cubef it is of the form

E={(0r,....6h1) : 0j € Oj}

where eacl®; c St is an arc of length®|. We call|®| the angular length of the cut®

Lemma 4.3.2.Let Z be a an angular rectangle of angular lengt®| and such tha7| >

Cz'onE. For afixedd € Nleta = (ay,...,an) satisfyle;| < Jfor all j. Then there is a
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smooth functioH, supported on the sé& with

1 ifB=a

n-1
G exp[i Zﬁje,-] dore) =
=1

0 if |8j] < Jforall jandg # «

and such that, satisfies the estimate

2(n-1)(J+1)
¢ ) (4.46)

H, < Cz|=
el

Proof. We use Lemma 4.3.1 to define functid@g (¢) supported o®; and having

_ 1 ifk=a,
f G, ()€ db = (4.47)
0 if |kl <Jandk # «;

For eachj we may use (4.37) to obtain

C )2(J+1)

|G(zj| < (_

] (4.48)

Define
H, = —= G,,(6))
gl

By applying (4.47) we see that

n-1
i Zﬁjej] dor ()
=1

[ﬁ é“igj) dgy - --do,_,

=1

| e

Il
e :n:
®

=
—~
S
~
@
2
2
Q.
>
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1 ifa=p
0 if someg; < Janda # 8
and we can estimate the size l8f on Z using the assumptioky| > Cz* and (4.48) to

obtain

1ML\
H - —_
| a(§)|sj]1(|®|)

( )2(”-1)(J+1)

<

O
[1]
20

O

Our construction on an angular cube is useful because the intersection of a twisting
cone as in 3.3 with a sphere around the origin contains an angular cube of some fixed size.
This, and the verification that we can avoid locations whres large, is the content of

Lemma 4.3.3.

Lemma 4.3.3.1f v € S™! andt < 1 then the se8"™! n B(v,t) contains an angular cube
with angular length®| < C;t and on whichJ| > C,t"2. The constant€; andC, depend

only upon the dimensiom

Proof. We verify the assertion abouf by showing that there is a constahtsuch that
B(v,t) contains a balB(z, At) centered aty"e S™! and on whichJ is appropriately

bounded. Observe that such a bound holds on the set

{E=(E,.... &) €SI & + &> (a3



CHAPTER 4. MOMENTS AND KERNELS 86

because we have

n-2

n-2 n-2
o _ (n-2)/2
91= [ JIsing*t > (ﬂls'”gk') = (&1 +€)
k=1 k=1

so thatJ| > (At)"2,

We may restrict to the casee {£2 | + £2 < (24t)?}, as otherwise the baB(v, At) has
the advertised property. Lette the point oS™™* N {¢2 | + £2 = (24t)?} that is closest to.
We claim|v — 3| < 2 V24t. To see this writes = (v4, . . ., vy) and verify that the set contains

the pointr defined by

1 - (2at)2 \Y? .
Tj:(%) vj forj=1,...,n-2

— Vi, U
21t .
m(vn_l, Un) if Uﬁ—l + Uﬁ #0
(the1,n) = n-17Yn
(24t,0) ifv2  +v2=0

Providingv2 ; + vZ # 0 we have a bound

n

2
lv—12= Zlvj - 7j

=1

2
21t .
= |:1— m] (Un—l + Un) + 1
n-1 n
n-2
< (At + (1) ) o2

=1

—N

1— (211)2 1/212 n-2
(1 v2 - v2) ] — Y]
j=1

< 2(21t)?

where we used

2 \1/2
(%) >(1- ()Y >1-2at for 2at<1 (4.49)
Un 1 Un
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The same estimate f@w — 7| is even easier in the caaﬁ_l +v2 = 0, so the claim is proven
providing 21t < 1.

We now need only observe from— 7| < 2 V21t and the definition of that

B(@, (1 - 2V22)t) c B(v, 1)

B, At) C {€ = (£1,....&n) 1 €24+ E2 > (A1)?)

Setting (1- 2V21) = 4, i.e. 1 = 1/(1 + 2V2), we see that.& < 1 so (4.49) is valid, and
that the ballB(v, At) has all the properties we desired.
By the above argument it flices to assume the b@(v, t) satisfies the bound aiy|
and to see that it contains an angular cube. However it is clear from (4.45) that at any point
(61,...,6,-1) On the sphere, changirdy by an amouny moves the point by Euclidean

distance less tham|. In particular ifv = (64,...,60,1) then

{(¢1,...,¢n_1) 10— ¢| < %‘}  B(w, 1)

is an angular cube of the desired type. O

As promised, we now have an appropriate function on the types of subsgts' ahat

arise in the case of twisting cones. Combining Lemmas 4.3.2 and 4.3.3 we have proven

Corollary 4.3.4. Letv € St andt < 1. Fix J e N and lete = (a1, ..., an) satisfylaj| < J

for all j. Then the se8"! N B(v, t) supports a smooth functidn, with

1 ifB=a

n-1
G exp[i Zﬁje,-] dore) =
=1

0 if |8;] < Jforall jandg # «
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and such thaH, satisfies the estimate

C\(-1)(23+3)

H,| < (T) (4.50)

Remarks

The reader may wonder why we define complex valued functions when our eventual goal
is a real valued kernd(x) with the properties listed in Theorem 4.0.3. The basic idea

is that the restriction of a monomial to the sphere will give a polynomial in the sines

and cosines of the angular variables, and this can be expressed as a polynomial in the
exponential monomialg®. This (real-valued) polynomial ie®’ will integrate to zero
against the (complex-valued) kernel, and therefore will integrate to zero against the real
part of the kernel, which will b&(x). While it would be possible to deal directly with

the sine and cosine functions at this point in the proof, it is notationally simpler to use
the method we have been following. Nonetheless it is apparent that the above arguments,
particularly for the case of the sphe®&, have been chosen more for their brevity and
simplicity than for the precision of the estimates that result. It is possible to do a more
careful construction that produces somewhat better estimates on the decay of the functions
H,., and it is certainly possible to do both the constructiosdf) and ofH,(¢) on more

general subsets of the sphere than those used here.
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4.4 The Kernel onI'

Building Blocks and Bounds

The hypotheses of Lemma 4.0.4 provide a decompositidhiiofo

X
F-:{r-<|x|<r-1—eE-}
J I = =+ J

x|

Ej= s™n B(-fj,t)

wheret is independent of. Writing I; = [r;, rj.1) we associate to each radial interval
the functiony;(r) of Section 4.2. For eachwe then apply the result of Corollary 4.3.4 to
the setg; c S™. Settingd = 2j + 2 we construct, for each multi-index= (a1, ..., @n-1)

with all |oy| < j, smooth function$d, supported orXi; and satisfying

n-1 1 if8=a
f Hia(®) exp[i Zﬁﬂj] do(é) = (4.51)
s =1 0 if 3] <2j+2foralll,andB # «
as well as the estimate
(n-1)(4j+7)
H,| < (T) (4.52)

We then combine these with the radial functigngr) to define

Fia)(r, &) = ¢i(NH;.(€)

The functionsF;,)(r, £) are smooth, supported on the Bgtand by Lemma 4.2.1 and the
estimate (4.52) they satisfy the bounds

C\(-D@j+7) o0 \I*!
IFa)(r.8)] S(—) ( - ) (4.53)
t Fjiv1 — T




CHAPTER 4. MOMENTS AND KERNELS 90

Moreover we have precise knowledge of the lower order momerftg; gf and bounds on
those of higher order. Using the general spherical polar coordinates introduced in (4.45)

we introduce the notation

M(j0).p) = f F(ia)(r, O)ré® do(6) dr
Rn
and can derive from (4.12) and (4.51) that

0 if some|B| < 2j + 2 andB # «

0  ifk<]
M(j.e).kp) = (4.54)

1 if 3=aandk = j

Hik ifﬁ:aandk> ]

where we have used the notation of (4.12) for the momejtsf y;(r). In the remaining

case where alBj| > 2j + 3 andk > j we have from (4.52) that

(n-1)(4j+7)

C
Mol < 1k (T) (4.55)

however in what follows we will only be interested in those momeé{gs,) « s for which
k > max |g)|. For these moments it will be more useful to lse 2j + 3 to rewrite (4.55)
as

4(n-1)(k-j-1)

C
|M(J,a),(k,ﬁ)| < Hijk (T) (4.56)

Construction

As in the one dimensional case (explained in Section 4.2) we proceed by inductively con-

structing a function with prescribed moments. 88&(r,6) = Fqo(r,6) and define (induc-
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tively)
N(jk,ﬁ): f KI(r, O)r*é”’ do-(6) dr (4.57)
Rn
) _ n-1 _
Ki*X(r,6) = KJ(r,H)—Z > NiargFieia(,6) (4.58)
=1 |y|<j+1

SO thatN(";llﬁ) = 0 for all 8 satisfying|g| < j+ 1,1 = 1,...,n— 1. By (4.54) the functions

F(j+10) do not afect the momentsl}*

kB) for k < j, and consequently all of these lower order

moments are zero.

- 1 ifk=0andB = (0,...,0)
N = (4.59)

kB) —
0 ifk<j+landg|<j+1forl=1,...,n-1

There are finitelyF;, for eachj, all of which are supported oF;. Since the set§
are disjoint it follows immediately that the above functiddgx) have a pointwise limit
function supported on. In order for this to be of any interest we must have estimates that
show the limit is integrable against polynomials and that its moments are given by the limit

of the moments in (4.59).

Estimates

Our model is the estimation scheme for the one dimensional case that was described in

Section 4.2. Notice that the moment sequelldg;g) evolves according to the induction
n-1
- : .
N = Niw = 25 25 NliaagMasior e (4.60)
1=1 |oy|<j+1

As mentioned earlier, and implicit in our inductive definition (4.58), we are only interested

in moments K, B) for which k > max |g)|. In this situation we may compare (4.54) and
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(4.56) to see that all of the momerni;. 1 4) i Occurring in the sum satisfy

C\40-Dk-j-2)
|M(j+1,a),(k,,3)| < Hj+1k (T) (4.61)

It is also easily seen that the number of terms in this sumjis @"1. These observations

suggest defining a new sequence by

P = max{|Mqoykp| : 18I <kforalll =1,....n-1} (4.62)
. o Co\40-Dk-j-2)

Pt pl 4 P}Hu,-ﬂ,k(To) (4.63)
whereC, = 2C is twice the constant in (4.61) and is fixed from here onward. The details
of our previous work show th&t, depends only upon the dimension

The benefit of this new sequence is that it dominates the seqmd;i%daut will be

much simpler to analyze. We record this as a lemma.

Lemma4.4.1.For all j, k, andg with |3| < k,I =0,...,n-1we have the bound

j j
NG| < P (4.64)
Proof. For j = 0 this is obvious from the definition. Assuming the truth of the estimate for
all superindices up t¢ we proceed inductively, looking at two cases. The simpler case is

whenk < 2j + 4 whereupong|| < 2j + 4 and so by (4.54) aMj,10) kg = 0. Then

n-1
Nic| = N(Jk,ﬁ)_z Z N+ 2.0y Mi+10).(8)

1=1 |oy|<j+1

= |N(jkﬁ)

i
<P,
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< P|j<+1

The more involved one hds> 2j + 5. We use the bound (4.61) to obtain

j+1
|N(kﬁ) (kﬁ) Z Z N(J+1a)M(J+1a) (k8)
=1 |ail<j+1
C\4-Dk-j-2)
<Nl + |3 D) Whafas($)
=1 |yl<j+1
4(n-1)(k-j-2)

- : 1 C

< Py + (2] + 3)7HP) x|

J t
4n-1)(k-j-2)

Co
< PJ + P]+1/'tj+1k( " )

_ pi+l
= Pk

In the last step we used thiat- 2j + 5 whence 4 — j —2) > 4j + 12 and so (2+ 3)"tis

certainly dominated by®1@i+12) = 240-1)k-j-2), O

Our estimates for the sequen{cté(} closely mimic those for the one dimensional case

in Section 4.2. The key result is

Lemma 4.4.2. The gf-diagonal terms of the sequenﬂéi} satisfy the estimate

| 2Ali-1)
p

i1 S CW nﬂl,m (4.65)

=0

CO 4(n-1) o
whereA = (T) andC is independent afl andt.

Proof. Expandinng(+l from the definition (4.63) we have

i+1 _ pj i k—j-2
Pe = Pl Pl AN

:P|j<l le A(le)+pJ ,qukA(JZ)



CHAPTER 4. MOMENTS AND KERNELS 94

(4.66)
= PP+ Pus A + Pip A2 o 4 PL g AT (4.67)
Recall the estimate (4.22) that stated
Hj-1k < 2
Hi-Lipix ~ K=j+1
and notice from (4.63) that
Pl = P+ P
whence
P:_llul,l+1 < I:):+1
Using these results we can compute part of the general term of (4.67)
-1 2 -1
P ik < (m) Pl a1k
2
< (m) Pl 11k
inductively
2 2 2 ;
< )P
(=i ez o
k—j—1)20-+D .
R . TR (4.69)

(k1!
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It is also straightforward from (4.54), (4.55), and (4.22) to see that

PP = max{|M(0,o),(k,/;)| ‘Bl <kforalll=1,...,n- 1}

< Alpox

2
<A (R) Ho, 1M1k

2
< A7 (R) Pg/.l]_,k

so that applying (4.68) for the cabe 1 we have

K= j— 1)120+D)
po < a7k k!) Pl ik (4.69)

Now we may substitute the estimates (4.68) and (4.69) into the expression (4.G’blfor

and obtain

. j+1
P|J<+1 _ P(lz 4 Z P:_l,uLkA(k_I_l)
1
(k= - 1)12““) (k= J - D207 iy
A Z =5 A

i
Pj+1ﬂj+1,k

We only need this result for the cake- j + 2 where it reduces to

ot _ | A0S (A0
2= |2 T L (2o
AT201+D) 1 @A
=7 + 1M+, j+2
(G+20 A4 m |
1 paci .
_ezAPj+1/1j+1j+2 if j>6

IA

( eZA) J+1:uj+lj+2 if j<6
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ProvidingA > 10 the above factor is bounded B#4/A) independently of, so inserting a
small constant to resolve this case we can inductively reduce to
] eZAJ j+l
P}:; < CW P nﬂl,l+1
1=1
e2Aj j+1

< Cm ll:)[:ul,lﬂ

Properties of the Kernel

It was already mentioned that the inductive definition (4.58) involves only finitely many
functions on each of the disjoint sdtsand therefore has a pointwise limit function which
we callK(x). With the estimate (4.65) in hand we have a natural boundfej on L1
From the definition (4.58) and the fact that BJi ,)(r, ¢£) are zero o'}, except those with

| = j+1, we see that

n-1
R ==>" > NiigFaen (€
I=1 |y|<j+1

on the sef’j,;. Using (4.64) this gives
IK(X)| < (2] +3)"*P), 1 F(jra)(r. €)]

so that substituting the bounds (4.53) and (4.65) (writing both in tern#g,ahen using
(4.14) gives

@A(-1) ;A\t 20 j+2 |
Ai-8 (24(n_1)) ( ) I_I:ul,|+1
1=0

|R(x)| <C(2j+3)"*
rj+2 - rj+1
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C o 20 \**{
sﬁez’*“‘l)(—) [ ]a+1n

rj+2 - rj+1

j j+2
= %QZA(J'—l)(j +1)! [ﬁ rl] (L)J

=0 rj+2 - rj+l
This is now very similar to the situation encountered in our one dimensional construc-

tion (see Section 4.2, particularly (4.27)). If we set

rj =T exp|2log(j + jo)] (4.70)
then we can directly apply the estimate (4.29) of Lemma 4.2.4 to obtain on the set

log|K(x)| < C - 71ogA + 2A(j - 2) + 2jolog?(j + jo) = 2(j + jo) log(j + jo)

<-(j+jo+1)log(j+ jo+1) (4.71)
for all suficiently largej. By the definition (4.70) we also know that lpg < logT +
2log?(j + jo + 1) onTj, so that

o 1 x|\
log(j + jo+ 1) = (5 Iog?)

and therefore
: SN A Y & I 1)
log|[K(¥)| < - (5 log ?) exp| 5 log = (4.72)

for all sufficiently large|x|. This rate of decay ensuré&qx) is integrable against all func-

tions having at most polynomial growth in the variapte and by the construction (see
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(4.59)) and the dominated convergence theorem we have

. , 1 ifk=0andB = (0,...,0)
f R(r, &)rke? do-(6) dr = (4.73)
- 0 ifkeN\({0O}andallg| <k

At this point we pause to recognize that (4.73) implies the fundi(x) has zero poly-
nomial moments except for the moment corresponding to the constant function. This is

because all polynomials ixi, . .., X, may be expressed in terms of functiate?’.

Lemma 4.4.3. Any monomiak® may be written
X' =1y agel (4.74)
B

wherer = |x| and eaclB occurring in the sum satisfigg| < |a|forl = 1,2,...,n.

Proof. We write
x¢ B X B
rlal = e

& (4.75)
where¢ is a point onS™ . Recall from (4.45) that
C0SO; ifj=1

&= qcosf; [1;sing  ifl<j<n

17 sing, if j=n

so that

n-1 j-1 -1 an
& = (cost 6y) 1—[ [cos@,- l_[ sin@) (1—[ sin@) (4.76)
I=1

j=1 I=1
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which is a polynomial ire® after substituting

g + dfi g gl — g
neg;, =
2 sInoj 2

cosd; =

and in conjunction with (4.75) gives a representation of the form of (4.74). We note in

particular that the variablg occurs in (4.76) only as

n-1
(Cosej)aj l_[ (SinHj)“' = (COSHj)(Yj (Sinej)aj+1+"'+“n—l
I=j+1

gli 4+ @b\ (b — gbj\aittany
_( 2 ) ( 2i )

so that for eaclg in (4.74) we have

Bil < > lonl < la]

1>]

As a consequence of Lemma 4.4.3 we conclude from (4.73) that

. 1 ife=(0,...,0)
fK(x)x“da(H)dr:
R“ 0 ifaeN"\{Q,...,0)

Sincex® is a real-valued function the same is true whéfx) is replaced by its real part

Re(K). Adjusting by the factopx™* that relateslo(6) dr to dx we define

K = 2D
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which is a smooth function supported Br= Sppt), satisfies

1  ifa=(0,...,0)

f K(X)x* dx =
R” 0 ifaeN"\{0,...,0)

KX
|X|n—1
|X| is large, so there is a constadit= C(n, t, jo, T) such that

C 1\ x\Y?
[K(x)| < s exp[— (E log ?) exp(é log =

and is bounded b . The estimate (4.72) gives a bound for the decai ©f) when

This completes the proof of Lemma 4.0.4 and therefore Theorem 4.0.3.



Chapter 5

Proof of the Main Theorem

The goal of this chapter is to prove Theorem 2.1.1. Following the method outlined in
Section 2.2 we define an extension operator as a smooth sum of operators corresponding
to cubes. The operator for a cuds constructed in Section 5.2 and involves convolution
against a polynomial reproducing kernel of the type introduced in Chapter 4 and supported
on one of the twisting cones discussed in Chapter 3. Section 5.3 then deals with proving
that this operator takes € W<P(Q) to & € WKP((QC)°) by establishing the estimates

described in Section 2.2, and in Section 5.4 we show that the result is an extenion of

5.1 An Elementary Reduction

From the results of Chapter 3 we have a good understanding of the geometry of that part of
Q which lies close t@Q. All of our constructions will involve this geometry and therefore
only be applicable in this region. However this is not really a restriction on our method
because the problem of extendifige W*P(Q) is in a natural sense a local problem near

0Q. The simplest way to see this is from the following lemma

Lemma 5.1.1.GivenaA > 0 and f € WKP(Q) there isg € W*P(Q) such that

101
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e The supportofisin{xe Q : dist(x,9Q) < 1},
e The functiond andg are equal on the sdi € Q : dist(x, 0Q) < 1/2}

e There is an estimate

lldllwke) < C(4, Kl fllwke)

Proof. Let y(x) be aC* function supported oB(0, 1) and with f x = 1. Theny, = t™"(x/t)
is C*, supported orB(0, t) and satisfiegv™y| < C(m)t~™. Convolution of the characteristic
function of{x € Q : dist(x, 9Q2) < 31/4} with y,,4(X) then gives a functio® e C* such

that

1 on{x € Q : dist(x,0Q) < 1/2}
o(y) =
0 on{x € Q : dist(x, 0Q) > A}

and with the estimatg¥"®| < C(m)2~" on the remaining piece &. The producg(x) =

f(X)®(x) now has derivatives

D°g(X) = Y DF()D"d(x)

0<B<a

and therefore

ID°g(Xlle < Y 1D f|sCllar — Bl) A

0<B<a

< C(4, Kl fllwkr)

for |a| < k, as was required. O

An immediate consequence of Lemma 5.1.1 is that if we can define a fur&gion
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Q° such that

a(x) forxe Q
G(x) =
&E9(X) for x e Q°

isin Wk’p(Rn) with ”G”Wk»P(R”) < C”g”\/\/kp(g) then

f(X) for xe Q
F(X) =

E9(X) for x e Q°

also hag|F|lwxegny < C(4, Kl fllwkrq), SO the problem of extension fOvP(Q) need only

involve functions supported on a small neighborhood@f

5.2 The Extension Operator

We wish to define our extension operator as a smooth sum of opefajontere eacldq

is convolution with a polynomial reproducing kernel supported on a twisting cone corre-

sponding toQ. The fact that such a kernel necessarily has unbounded support inevitably

introduces some technicalities. They are mostly dealt with by smoothly cutfinfy at

some distance froiQ as in Section 5.1, however we also need a preliminary construction

of an unbounded twisting cone corresponding to a cube.

The Cone and Kernel for a Small Cube

Let ‘W, be the Whitney cubes frof2°)° such thatl(Q) < 5/20n and fix Q € Wi.
Corresponding to this cube we may take a ch&in of Whitney cubes of2 with properties
as in Lemma 3.2.3. Within the chal$;} we have a twisting conEq as constructed in

Chapter 3 Section 3.3.
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In order to apply the results of Chapter 4 we translajeo the origin and rescale by
1(Q)~1. This sort of translating and rescaling will occur several times during the proof so
we take this opportunity to fix some notation. Unadorned variables anc sgt§q will
be in the usual spack", while symbols decorated with a tilde, like ¥, and f"Q, will
refer to the corresponding objects in the (dimensionless) parameter&hakiee relevant

transformation isx= (X — Xg)/I(Q), and our first use of it is

1

o= @(FQ - Xq)

Recall from Lemma 3.2.3 that the radius of the twisting cbggrows linearly with the
distance fronQ for some range of scales. Rescaling thii“(goNe see that there is an inner
radiusRy, an outer radiu®;(1(Q))1, and a constarttsuch that for alf e [Ry, Ri(I(Q))}]
there isy'with [y| = f and

B(Y, 1) < T (5.1)

Each of the constanf®,, R; andt depends only om, ¢, andé. In particular we note for
later reference that in Lemma 3.2.3 we had a cube of&iz&0+/n at radiusR; from xq
and so by (1.1) we can tal® = €6/10.

If (5.1) were true also for > R;(1(Q))~! then Theorem 4.0.3 could be applied to pro-
duce a reproducing kernel for polynomials f)@ To make this possible we will adjoin a
piece of cone td'g in the following manner.

Apply (5.1) to findy'with || = Ry(I(Q))t andB = B(¥, t[}]) ¢ fQ. The set we attach to
fQ is the unbounded piece of cone 0N R;(1(Q))~*S"* with vertex at the origin. This

may be written

R(l(Q)

e B

{)”(: 1% > Ry(I(Q))* and

In order to avoid some technical issues later we trim extraneous material sera well
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as attaching the new piece. Wilas above define

R(I(Q)*

x € B(Y, t|y
(e 8.1

%=¢MW%sms&MQWﬂu&wmz&MQWam
In keeping with our notation we also define
Iy = 1(Q[G + Xo)

The result of the construction so far is illustrated in Figure 5.2.

Figure 5.1: The sy,

We record for future reference a trivial consequence of Lemma 3.3.1.

Lemma 5.2.1.1fy € f"Q andx € (17/16)Q then(x + 1(Q)¥) € S for someS; in the chain
coveringlo. In factifyis such thatxq+1(Q)y) € I'oNS; then(x+I1(Q)Y) € Sj_1US;US;,1.

Now f“*Q has the property that for all= R, there isy'with [§| = I and

B(¥, tIjl) < T
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Applying Theorem 4.0.3 we then have a smooth funcﬁ@(&) supported om:;‘? and having

the properties

N 1 ifa=(0,...,0)
IRESUE 5.2)
- 0 ifaeN"\{0,...,0)

¢ < C SN A R S v
|Ko®)| < e expl (Zlog T) exp 2Iog = (5.3)

whereC andT are constants depending only B, R;, andt, and therefore only on, e,
andé. It will be convenient later to have simpler notation for (5.3) and to know a variant
of it on cubesS; of the chain containingq. We therefore record that ¥ € (17/16)Q and

y € Sj then by Lemma 5.2.1 and the linear growth (3.5) of the ch&jh

v (Y= X &2M4E2)
(g )<l (o 54
where
1 s\? 1 s\?
k(s) = Cexpl— (5 log ?) exp(é log T) l (5.5)

Definition of the Operator

Let f e LL

loc

(©2). To accommodate the restriction that we must work on a small neighbor-
hood ofdQ, we first multiply f by theC* cutoff function introduced in Section 5.1 with
A = €6/100n. Somewhat abusing notation we also dse® denote the resulting function,

which now vanishes identically on anyfSaiently large Whitney cub8&.

€o

f =00nSif I(S) >
®) 100y

(5.6)
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Fix Q € Wi. In essence we wish to defid f on (17/16)Q by convolution of f
againsIKQ with a scaling parameter 6fQ), however a slight dficulty is introduced by the
fact thatf may be undefined at points 8f, \ I'y. To avoid this annoyance we cuffd

outside the set of interest, which in this case isxalich thatX| < R;(1(Q))L. Let

f(X) if [X—Xol <Ry
fo(x) = (5.7)
0 otherwise

It is worth noting that the use of a characteristic function tofchiere will not be a problem
because it occurs at the fixed radiRsfrom Xq. At this radius the cubeS; coveringl'q
have length at leagty/(10+/n) and we already know from (5.6) that= 0 on these cubes.
The functionfq is therefore &£ continuation off fromI'q to I'y,.

Define the operatafq f(x) for x € (17/16)Q by

[ totx+ QDR if Qews
Eqf(x) = {V&" (5.8)

0 otherwise

Note from the preceding discussion that the convolution really only invaives a small
neighborhood of'q. In particular it follows from Lemma 5.2.1 and the fafgf = 0 on

't \ I'q that the convolution in (5.8) only involves valuesfefon US;, where in particular

fo coincides withf. (To see this last statement is true on the largest cubes from the chain
{Sj} we must again use thédt= 0 on these cubes by (5.6).)

Finally we define the extension operator at all point&)° by
Eof(0) = > Eaf(NDo(¥) (5.9)
Q

as previewed in (2.4) of Section 2.2. The functidngx) are the smooth partition of unity
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introduced in Lemma 2.2.1. We also defifié(x) = f(x) at all pointsx € Q. By Lemma

1.1.4 the boundargQ has no measure, €f is defined almost everywhere.

5.3 Estimates for the Extension Operator

The purpose of this section is to prove that our operator gives a function in the correct space

on (Q°)°. We state this as a theorem.

Theorem 5.3.1.For fixedk € N, 1 < p < oo, and f € WKP(Q), the function&f is in

WEP((Q€)°) with the estimate

||8f ”wkvp((QC)o) <C(n,e 6.k, p)” f ||WKP(Q) (5.10)

Proof. The first step in definingf was to replacd by the product off with the smooth
cutoff function introduced in Section 5.1. We see from Lemma 5.1.1 thaMtf§Q) norm

of the product is comparable to that baand therefore it dftices to prove the bound (5.10)
for this new function. By the discussion following that lemma it is also clear that any
extension of the product is also an extensior g0 we may henceforth ignore this step in
the definition and simply assume thiat= 0 on cubes of length at least/(100+/n).

Suppose that ¥ p < . By the argument given in Section 2.2 we have the bound

a p
P ey

= > ID"EfIPy g,

Qew

<C ) ID"Eg g,
Qew

+Cs Z Z Z ol — B)PHQ) AP DE (o f —SQ,f)||‘L’p(Q/n(17/16)Q) (5.12)

QeW QeN(Q) 0<B<«

(5.11)
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for the operator defined by (5.9). The constaBisand C, depend only om, k and p.

Inserting the estimates proved in Lemma 5.3.4 and Lemma 5.3.5 below we obtain

||D08f||fp((9c)°) < €[ @l/sy + IV DIy

where our constants now depend alsa@ndé. This completes the proof ford p < o

because

16 o)y = Zk Dt | oqaeyy
{475

< C(n, €6,k P)lIfllwke)

The proof forp = ~ is also based on the estimates in Lemma 5.3.4 and Lemma 5.3.5,

but in this case we use (2.6) of Chapter 2, Section 2.2. This gives the pointwise bound at

xeQ

D"EFOY < ID"EQ FOY+ ), D, clle = ANQ) " PIDP(Ef(X) - Eq f(X)
QeN(Q) OB<

< ClID* f[lLe(@ + ClIVF [lLe (@l (Q)

< CllIfllwke(q)

where we have used th@ has finitely many neighbors and that the length of cuRes

W, are bounded. O
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Useful Estimates forKq

As we proceed with the proof we will have need of some estimates for sums and integrals

of Ko. To assist in the flow of the material and avoid repetition we list them here.

Lemma 5.3.2. With «(t) as defined i{5.5)we have

D 2k(2) < C12k(2")
j=m

Z 2%(2]) < C,
=0

whereC; andC, depend om, ¢, 6, andq but not onm.

Proof. Using the definition (5.5) ok(t) we see that there are constaotsc,, andc; de-

pending only om, € ands, such that we may bound the sum by an integral

00
m

Z 29,2 < ¢, f exp|caqt — cat”2e | dt
j=m

_ 22, f exp[czq(t —m) - cs (tl/zec3t1/2 3 ml/Zecsml/z)] dt
m

_ 2qu(2m)le EXD[CZQS— Ca ((S+ m)l/zecs(s+m)1/2 _ ml/zecsml/Z)] ds
0

It is clear this integral is finite for anyn > 0 andq, with a boundC(m, q) depending

continuously orm. However ifm > c;? then convexity implies
Ca(S+ m)Y/2eB=(E ™ _ coml/2gtsm™ > cogess’® _ g
so that in this case the integral term is bounded by

f exp[czqs— Cast/2e55” 4 e] ds< C(q)
0
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and we conclude that the integral is always bounded by the largggdand the maximum

of C(m, q) overm € [0, ¢32]. O

Corollary 5.3.3.
| [Ra@] e < ctn0

Proof. Simply integrate radially by dividin&" up into concentric annuli from radiug &

21+l From (5.3) and (5.5) we see immediately that

fR Ko@) d§f < C > 2Ik(2))
n ]:0
and the result follows from Lemma 5.3.2. O

Estimates for Individual Cubes

The simpler of the estimates we need concerns the behavior of the oggsatorthe cube

Q. We state it as a lemma

Lemma 5.3.4.1f &q is the operator defined i(6.8)then forl < p < co

D ID°Eqf Il < CID @] (5.13)
QeWw

and whenp = o«

ID“EfllLe(q) < ClID fllLo(y

whereC = C(n, €, 6, k, p).

Proof. The estimate is trivial for those cubes whefg is identically zero, so we may

restrict our attention to the cubes where it is given by the integral in (5.8)f asd its



CHAPTER 5. PROOF OF THE MAIN THEOREM 112

derivatives are locally integrable arh%b has rapid decay we mayftkrentiate within the

integral to obtain

DEof(¥ = [ D"fo(+ QTR & (5.14)

It could be objected thaty might have very bad derivatives on the cirple Xg| = Ry where
we cut it df by a characteristic function, however this is not an issue for the same reason
given in the comments following (5.7), specifically the fact that O in a neighborhood
of TG N {IX = Xl = R}

We can now quickly deal with the cage= c. The discussion following (5.8) showed
that the only pointsX + 1(Q)y) where the integrand is non-zero are in the ch&y} of
Whitney cubes containing the twisting cohig, where in particularfg = f. Therefore if

f € Wk(Q) we can apply Corollary 5.3.3 to obtain

D80 (9] | f D f(x+ QR )

<07 ey [ [Ra®l e

< C|/D*f

||_w(sz)

with a constan€ = C(n, €, 6). For the remainder of the proof we will therefore assume that
1<p<oco.

Holder’s inequality and Corollary 5.3.3 may be applied to (5.14) to yield

(p-1)/p

1/p
D& ()| < ( f D" fo(x+ l(Q>9)|"|KQ(9)|dy) ( f H|RQ()~’)|dy)

sc(fRn

1/p
D" fo(x + (QF)[Ro@)| dy)
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Q p
|D 8Qf“Lp(Q) Scj;jl;n

Now if we make a change of variables

so we have

DY fo(X + |(Q)y)|p|RQ(y)| dy dx (5.15)

ol ) o

then using Lemma 5.2.1 and the fdgt= 0 onI';, we see that the support of the integrand

N PLS sen] e 1
[ o tatc+ 1Q@PIRa 0 = 15 [ 0 teta

is contained inuS;. Applying (5.4) to estimat(*aIZQ((z— x)/I(Q))| for pointsz € S; and

X € Q we may then write

og £|IP 1 Q)™ (1S ot (2|
”D an“Lp(Q)SC'(Q)“LZ('(SD) (|(Q))f|D f (Z)| dzdx
Q) n_lk(@)
SCZ(I(S,-)) @),

because the integrand is then independemt®fQ, andfg = f onUS;.

D*f(2)|" dz

It is now possible to sum over & € ‘W, as is needed for (5.13). We use the notation
introduced in Section 3.3. L(S) be the set of all cube® € W, such that the twisting
cone corresponding 1Q intersects the Whitney cul&of Q. and recall (3.10) in which we

bounded the number of cubes of sig®) = 27™(S) in G(S) by C(¢)2"™. This yields

(S
D IPEaf [l <C D) D, (%) K(%)fsjmf(zﬂpdz

QeWi QeWy Sjnlg

) 1Q\"™ (1(S)
<C Z |D f(Z)HLF’(S) ;S)(@) ('(Q))

SeW(Q)

<C > [ID"t@| s (Z 2" ”K<2m>]

SeW(Q)

<C > [D"f@ s

SeW(Q)
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—clpr e
LP(Q)

where in the penultimate step we used the bound from Lemma 5.3.2. This verifies (5.13)

and proves Lemma 5.3.4. O

Estimates for Pairs of Adjacent Cubes

The estimate needed to prove compatibility of the extensions for pairs of adjacent cubes is

as follows.

Lemma 5.3.5.1f & and Eg are the operators defined 1§%.8) for two adjacent cube®

andQ thenforl< p< o

Z Z Z C(|a’—ﬁDpl(Q’)_la_ﬁlp”Dﬁ(an _SQ'f)”EP(Q'n(l?/le)Q)

QeW QeN(Q) 0<p<a

<CneskPViWllLg  (6.16)
and forp = co we have forx € QY
1(Q) D (Eof (¥) - Eo F(¥)] < CHQY IVl (5.17)

As this bound is considerably more complicated to obtain than that in Lemma 5.3.4 we
begin with a short overview of the method. In essence the plan is as follows. Corresponding
to the cube) and Q' we have twisting coneBg andI'a. We approximatef by degree

(k — 1) polynomials, usind®q on the initial piece o' and Py on the initial piece of

I'e. The diferencef — Pq at any point of the twisting conkg will then be controlled by

the integral of V¥ f| alongl'q as in Lemma 3.4.2, and the polynomial growth of this error

term will be dominated by the exponential decaykef. Similar estimates will hold for
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f — Po. The polynomialdq andPqy will be invariant under the operatél, as it involves
convolution against the reproducing kerrlf%. It will also be possible to show that the
difference betweeRqy and Py is controlled by the integral giv*f| along a tube joining

the intial pieces of the cones. Combining these estimates will give the bound (5.16).

Proof. It is useful to recogize immediately that itffiges to assume bot@ and Q" are
in ‘W,. This is clear if bothQ and Q" are too large to be irfi#/;, since in this instance
Eqf = 0 = Eg f by definition. However the same occurs when only one of the c@bes
‘W1, because by the definition a8/, and (1.2) the neighboring cube h&®) > e5/50n,
whence (3.3) shows that the smallest cube in the cf@incoveringl'g has length at least
2¢6/(25+/n) and by (5.6) we know that = 0 onI'q. This again implie€qf =0 = Eq f,
so all estimates are trivial unless b&@andQ’ are inW;.

To ease readability of the proof we begin here by writingccording to its polyno-
mial approximations oilfg andI'g, but give estimates for the twoftirent types of terms
separately. These appear as Lemma 5.3.6 and Lemma 5.3.8 below.

First we need a a little notation. Recall that the twisting cbpecorresponding t@
has a central curveg and at eaclz € yq a radiuss(z). The initial point ofy is calledz,
and the ballBy is By = B(z, S(2)). Analogous definitions are made fgf,z), andB;. In
Section 3.4 we defined the polynomial fitted to a function on a set; here ViR, leé the
degree K — 1) polynomial fitted tof on B, andPq be the corresponding polynomial for

on By, so that for anya| < k a multi-index

f D*(f — Pg)(x)dx=0 (5.18)
Bo

f D*(f — Pg)(x) dx=0 (5.19)
B

/
0
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we then wish to rewrite the terms in (5.16) using the expansion

Eof(X) - Eo F(¥)
- [ fec+ QDRI [ folx+ QDR @2
= [ (fo=Po)(c+ QDR &7+ [ Polx+ QR o

- Rn(fQ’_PQ')(X"‘l(Q/)i)KQ’(z)di— f Po(x+1(Q))Ke(@dz  (5.20)

however expressions of this type rapidly become large and unwieldy. We therefore intro-
duce yet another piece of notation. Convolution with the scaling paran{€gwill be

denoted

9+ Ro() = [ alx+ QIR & (5.21)

so that we may rewrite (5.20) as

Eof(X) — Eg F(X) (5.22)

= ((fq — Pq) * Kq) + (Pq * Kq) — (Pg * Kg) — ((fo — Pg) * Kg) (5.23)

If 1 < p < o we take the derivativdd?, the p-th power, and the integral ove@( N

(17/16)Q). Using the fact that there are only three terms in the sum we have

|DF(Eof - &g f)”IF_)P(Q’ﬂ(17/16)Q)
< C(p)”DB((fQ - PQ)+ o)

LP((17/16)Q)
+ C(IO)HDﬂ(PQ « Kq — Py = Kg)

p
LP(Q)

+C(p)||P((fo — Po) + Ko)

p
LP(Q)

whereupon substituting the bounds from Lemma 5.3.6 and Lemma 5.3.8 completes the

proof in the case k p < .
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Whenp = co we instead obtain the conclusion directly from (5.22) andthestimates

of Lemma 5.3.6 and Lemma 5.3.8. O

Polynomial Terms

Lemma 5.3.6.Let Q and Q' be cubes froni}/;, the operatorsSq and Ey be defined as
in (5.8), and Po and Py be the polynomials fitted tb on Q and Q" as described in the

discussion preceedin®.18) Using the notatior{5.21)we have forl < p < =

-l z NN
> Q)P |DA(Pg  Ro - Po * R,
QeW; QEN(Q) 0<p=a

p
o <CIP0y

and forp = o
(@)D (Pox Ro—Po # Ro) . ) < CIITH )] (@)

whereC = C(n, €, 6, k, p).

We remark that the proof of Lemma 5.3.6 is entirely equivalent to that of Lemma 3.2 of
[Jon81]. The only dterence is that we derive (5.24) and (5.25) from the properties of the
kerneIKQ, whereas in [Jon81] this is (essentially) the definition of the opetator

In the course of the proof we will have occasion to use the following elementary conse-

guence of the fact that any two norms on a finite dimensional Banach space are equivalent.

Lemma 5.3.7.1f Ay ¢ A; has measurgA;| > C4|A;| then for alll < p < o there is a
uniform bound

IPllLpeay) < C(K, Co)IIPIILe(a,)

for all polynomialsP of degreek.
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Proof. Our first observation is that

Po+Rol® = | Potx+1(Q9Ra) o

= Po(¥) (5.24)

To see this one need only expand the polynorRglx + 1(Q)y) as a polynomial if(Q)y
and use the property (5.2) of the kerig). Similarly

Pg * Kg(X) = Pg(X) (5.25)
It therefore sfiices to estimate terms of the form
”DE(PQ B PQ')”Lp(Q/)

From (3.3), (3.4), and the definition & we see thaB; has diameter comparable to both

1(Q’) and distQY’, B). Together with Lemmma 5.3.7 this produces the bound

”DB(PQ - PQ')”LP(Q') < C”Dﬁ(PQ - PQ/)”LP(BEJ) (5.26)
with a constant depending only one ands.
To estimate (5.26) we use the Poireastimate (3.12) and write
”DB(PQ - PQ')”LP(BE)) < ”Dﬁ(f - PQ')”LD(B&) + ”Dﬁ(f - PQ)”LP(B&)
< Cg(ZE))k_w”ka”LP(Ba) + ||Dﬁ(f - PQ)”LP(BB) (5.27)

The latter term is estimated using the version of the Taylor estimate proved in Section 3.4

of Chapter 3. The polynomial fitted ©° f on By is preciselyD’Pq. Let {T;} be the chain
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of cubes connecting the centers of the b&dsandB;,. It was shown in Lemma 3.2.1 that

all of these satisfy
I(T;

I(Q

whereC = C(n, ¢, 9), So that restricting to the case<lp < co and applying Lemma 3.4.2

< )SC

Olr

we have

m n/p
[D°(F = Po)ll ey < CATm) ™ ) '(TD(IM) V5 s

£ I(T5)
< CIQYH Y IV () opr,
=1

It was also shown in Lemma 3.2.1 that the number of cubes in a chain of this type is

bounded by a number dependingmre andé. Using Holder’s inequality we then have
p 7\ (K— kg]|P
”Dﬁ(f - PQ)”LP(B;)) <CIQ )( WI)DZ”V f”Lp(Tj)
J
where nowC = C(n, €, 6, k, p). Combining this with (5.27) and usirgyz)) < CI(Q’) yields
m
p - 7\ (K— p
ID"(Pq = Po)|lug, < CS@)" PRIV Tl + CHQ) P Z;”ka(y)”m(ﬂ)
j=
m
7\ (k— k p
<CI(Q) Wl)pz;”v D oer, (5.28)
J:
In order to sum terms of the form

I(Q’)_la_ﬁlp“PQ s RQ — Pg * RQ’”EP(Q’)

over allQ € Wy, Q € N(Q') and 0< B < a, it is helpful to use the notation introduced

in (3.8) of Section 3.3. We definefi(Q’) to be all cubes occuring in chains connecting
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locations of size comparable t(Q’) and separated fror®’ by distance likd(Q’). It is
apparent that the chalfi,,} of (5.28) is of this type with constants dependingep and

n, whereupon the estimate (3.9) allows us to calculate

DD D QY PP Rg - P+ Ro[[ e

Q eW1 QeN(Q) 0<B<a

<C Z Z 1(Q) AP () k-BDp Z ”ka”EP(T)

QeW 0<B<a TeF(Q)

<C Z Z IV E I gy (Q) PP

QeW TeF (Q)

<C DIV,
TeW(Q)

= CIIV*f I pq)

where in the second to last inequality we used gt k and that there is a bound on the
size of cube®) € ‘W;. This concludes the proof for the cas& p < .
To complete the proof fof € W**(Q) we return to (5.27) and use (3.15) of Lemma

3.4.2 to write

”Dﬁ(PQ B PQ')”LN(B()) = ”Dﬂ(f - PQ')”L“’(BE)) + ”Dﬁ(f B PQ)||L°°(86)
< CS(Z) V¥ Fllgy + CHQ) VIV FllLoe

< 1(Q)Y NV |y

because both the diametergf and the separation &, from Bj, are comparable t{Q’)

with constant<(n, €, 6). Substituting into (5.26) and multiplying ByQ')-*#! gives

|(Qr)—|a—,6’|HDﬁ(PQ * IZQ - PQ, * RQ,)HLM(Q) <C ||ka|||_oo(g)|(Q')k_|"|
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Terms involving (f — Po)

Lemma 5.3.8.Let Q and Q' be cubes froni}/;, the operatorsSq andEg be defined as
in (5.8), and Po and Py be the polynomials fitted tb on Q and Q" as described in the

discussion preceedin®.18) Using the notatior{5.21)we have forl < p < o

D 2, 2@ |Q_B"DHDB(UEQ Po) * o)

Q eW1 QeN(Q) 0<B<a

LP((17/16)Q) ”Vk f (Y)”Lp(g) (5.29)

while forp =

I(Q) lHDﬁ((fQ — Pg) * Ko)

L°°((17/16)Q) ”Vk f (y)”Lw(Q)l (Q)k_lal (5.30)

whereC = C(n, ¢, 6, k, p).
Proof. We first diferentiate within the integral to write

DA((fo - Po) + Ro)(9 = | D(fo - Po)x+ (QDKa5) o

as in (5.14) and make the change of varialzles(x + 1(Q)¥) to obtain

O/t~ Pa)+ 9 = s [ /(- Padae | a2

Now by Lemma 5.2.1 we know that all points at whikg((z - x)/1(Q)) # 0 lie either in
the union of cube$; from the chain coverin@o, or within distancey/nl(Q) of 5\ T

Moreover fo = 0 outsideuS; and we have the bound (5.4) fé whenz € S; and
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x € (17/16)Q. This allows us to write

oot ) () [

xfl:\l"

It is possible to write a similar estimate for the term involving the integral ﬁgarf"Q. All

we need do is define a collectigm,,} of cubes such that eadh, has length comparable
to its separation fron® and soUT,, contains all points within distancgnl(Q) of 5\ o
This is clearly possible from the definition ﬁg and we see that all of the constants of
comparability depend on, €, andé. In particular it is evident that (5.4) is still valid for
these new cubes. We may then adjdin} to the chair(S;} so that we have a chain covering
all of I';,. Not all cubes in the chain are Whitney cube$xbut we need only keep in mind

that fo = 0 on all those that are not. Using this convention we obtain

P(tta P R < 312 (1) Jlprtta-Poraligy G
J

I(S)) 1(Q) |(Q)n

Now suppose Kk p < o and apply (3.14) of Lemma 3.4.2 with the exponpn# 1 to the

integrals. This gives

J.[pe=roa dz<C(l(S))k‘W'1ZI<sm)((( )||ka()||Ll(S)

so that

(S))
1(Q)

f ‘Dﬁ( fo — Po)(@

K-|8-1
o =S iy

) (o) f. [7*tet0ay

This is even valid on the cubes that we appended to the chain; we keep in mirg that
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on those cubes. Substituting back into (5.31)

D((fq - Po) * Ko)(¥)
<c 3 (i )<{ica ) asm I(Sm) 1, Iv41000]dy
j

Q) \1Q
§ IS\ (1(S)) l(sm)
— k-] A I K
clQ Z,.(I(Q)) (l(Q)) © 1,7 el

o\ [(Sm) (I(s ))k-w' (|(s,-))

= CI(Q"¥ V¥fo(y)|d —

@25 1, 1710 [J (i@ i@
however the number &; of a given scale is bounded by constants depending erand

4, so applying Lemma 5.3.2

Sfie) (@) <ensslig) ()

j=m

and hence

K—|Bl+1
Do - Po)+ Ra)09] < 1@ . (] [(88) £ 91t ay

Taking thep-th power we may use &lder’s inequality, then the estimate from Lemma 5.3.2

with q = (kp-|8lp+ p—n)/(p — 1), and then Jensen’s inequality to conclude

IDA((fq - Pg) * Ko)(¥)|”
A I(sm))”K(l(sm)( k )"H“’ IS\ (1(Sm) }‘“
=clQ [mZ;(l(Q) |(Q)) [V Tebiidy ;(I(Q)) (I(Q))

STCLEDY ('l((SQm))) K('l((scg;)) IV Fo)IP dy

< CIQ ¥ i (1@ [ et tetray
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As the estimate is independent xfintegration ove17/16)Q merely increases the con-

stant marginally and cancels a factod@)". We then have

DA((fr — « K P < Cl(Q)k-Bip N K(@) kg Pd _
LR T CIDWICE) | P fa)Pdy (532

which is at last in a form appropriate for estimating the sum in (5.29). If we multiply (5.32)

by 1(Q)7*#P and sum as in (5.29) we obtain

3 QDA (o - Po) + Ko

QeW1 QeN(Q) 0<B<a

<c > Qe Y (l%)) f V¥ fo(y)IP dy

QeW1 QeN(Q) 0<B<a Smmraq&(b

LP((17/16)Q)

but a cube’ has a bounded number of neighb@% N (Q’) and there are at mo€X(n, k)
values ofg with 0 < 8 < @ and|a| < k. MoreoverQ € W, hasl(Q) < C(n,¢,6) sola| < k
implies |(Q)-1?0P < 1. If we write W, for the collection of cubes that are neighbors of

cubes fromW; the estimate then reduces to

333 QDA (o - Po) + Ko

QeW1 QeN(Q) 0<B<a

LP((17/16)Q)

1(Sm) K
<C |[V*f °d
: QZ% szmra ﬂ,“( @ )f oIy

Note that sincdq = 0 on the cubeS; that do not intersedt, we may leave those out of the
inner sum. The cubes that remain are Whitney cub&3 afl which fo = f. Reversing the
order of summation and using the notation of Section 3.3 they may be writ@reas(S).

It was proven in (3.10) that the number of these cubes having sch{§is bounded by
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a constant multiple of2, so

3OS 3 U DA (o - Po) + Ko

QeW1 QeN(Q) Op=a

LP((17/16)Q)

sc Y X o1 ) [ wroray

it SubTos0 ('(Q)
1(Sm)

=C IVF(y)IP dy ( )
SE;Q) f Q;S) | (Q)

<C Z f|V"f(y)|pdyZ 2"ik(2))

SeW(Q)
f V4 £ ()P dy

SEW(Q)

< [V W,y

where the penultimate estimate is from Lemma 5.3.2.
As has been true throughout, the proof is easier in the paseo. Returning to (5.31)

we need only use (3.15) of Lemma 3.4.2 to deduce

S, I(S;
|DA((fo — Po) * Ko)(¥)| < IVl (Q)Z(I((Q))) (S (I((QJ)))

l(sj))k—w'” (|(s,-))

< CIQ  PIV¥fllL=o (— K[k
L”Z Q) Q)

< CI(Q)* PIV¥|L~(q)

where we used the fact that only finitely mayof a given scale intersect the twisting cone,

and the estimate from Lemma 5.3.2. Multiplying Il§Q)*#' gives the desired result. o
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5.4 Completing the Proof

For f € WrP(Q) we have now define&f on all butdQ, which is a set of measure zero,
and we know that th&V/*P norm of &f on bothQ and(Q°)° is controlled byl fllwkrqy- All
that remains is to see thate W*P(R"). This may be thought of as checking tt&t on
(Q°)° “joins up” correctly with f atdQ. The situation in which this is most readily proved
is whenf is a smooth function oR" with bounded derivatives a2, and we can reduce to

this case using the following result of Jones (Proposition 4.4 of [Jon81]).

Proposition 5.4.1 (Jones).For fixedn > 0, k, p € [1,00), and f € WKP(Q) there is
g € C*(R") N WKP(Q) and M e R with

IIf — dllwke) < Cn

ID°gl<M for0<la| <k (5.33)
while for fixedf € Wk=(Q) there isg € C*R" N Wk=(Q) with

I — dllwkre) < Cn

gllwee ) < Cll fllwke(q) (5.34)

Proof. We give only a sketch of the proof; further details may be found in the original
work [Jon81]. Note first that the usual methods of mollification on Lipschitz domains do
not work everywhere on locally uniform domains, but at distashé®m 0Q it is perfectly
legitimate to mollify using a smooth bump function supported on a ball of ratfigsThe
difficulties in the proof involve what can be done nééx.

Jones uses the following procedure to obtain a smooth approximation to the function

in a neighborhood of the boundary. First he takes a collection of Whitney cubes that are
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neither too small nor too large and divides them up to reach a particular dyadic scale. These
should be thought of as forming a thin band parallel to the length of the boundary. To each
of these cubes he associates the polynomial fitted to the cube as discussed in Section 3.4
of Chapter 3, so that it matchdsand its derivatives of order less th&mon the cube.
Then he magnifies all of these cubes by &isiently large factor that their union covers
a neighborhood 0fQ. The neighborhood has some known size depending erands.
On the magnified cubes he takes smooth partition of unity which is used to smoothly sum
the fitted polynomials, in each case multiplying the polynomial for a cube by the smooth
bump function for the corresponding magnified cube. The proof that this gives a smooth
approximation to the function neéf involves joining pairs of cubes by tubes of the type
discussed in Section 3.3 and bounding the variation of the polynomials by the integral of
|VKf| along the tube in a manner akin to the proof of Lemma 5.3.6.

Once he has a smooth function to use near the boundary, Jones takes a smdbth cuto
functiony (as in Section 5.1) and usgsnd (1- y) to divideQ into a narrow neighborhood
of the boundary and a region well separated from the boundary. The width of this neigh-
borhood is chosen so that tié°P norm of f on the narrow neighborhood £ is bounded
by n, and the approximation td near the boundary is defined to pdimes the polyno-
mial approximation discussed above. The remaining region is some fixed distance from the
boundary, sof is smoothed using standard mollifier supported on balls that remain away
from 0Q before being multiplied by (% y) to give the second piece of the approximating

function. O

For smooth functions of this type it is notfficult to prove that applying the extension
operator produces a function for which all derivatives of orders lessklaa@ Lipschitz at

small scales. We record this as a lemma.

Lemma 5.4.2.Fix k € N and p € [1, 0] and letg € W*P(Q) satisfy the conclusions of
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Proposition 5.4.1. Then for ar§ < |o| < k the functionD*&Eg is locally Lipschitz orR".

Proof. Fix @ with 0 < |a| < k. If x € Q then&g = g in a neighborhood ok andDg is
Lipschitz there by the appropriate choice of (5.33) or (5.34). Moreover it follows from the
L> case of Theorem 5.3.1 th&g satisfies the same bounds (with a multiplicative constant)
on (Q°)° and is therefore Lipschitz in a neighborhoodxof (Q°)° by the same argument.
We therefore need only show thatg is Lipschitz in a neighborhood of any point 642,

for which purpose it clearly sfices that there is a constas+ 0 such that ifx € (Q°)° and

y € Q with [x—y| < sthen
|D*(Ea(¥) - Eg(y))| < CIx -y (5.35)

We will take s = €§/200n. Fix x € (Q°)° andy € Q with [x—y| < s. Let Q be the
Whitney cube of(Q°)° that contains, let X denote the center d®, and takeyq to be
the initial point of the curvey around which we have the twisting cofig. Integration
againstKQ preserves polynomials, so in particular it will preserve the constant function

L = D*g(Yo). Since&g(Xq) = Eqd(Xo) we may compute

[Deg(xe) - D'y = | [ (D50 +1(Q) - LReG) o

< f ID"ga(%g + 1(Q)F) - L||Ro)| d¥
Rﬂ

Reasoning as in the proof of th& estimate for Lemma 5.3.8 we see that

[D*go(x + 1I(Q)) — L| = [D"ga(xq + I(Q)F) — D*g(yo)|

k—|a|

< Clxo + QY - Yo| “IIV*gllL~(o
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and this may be integrated agaitté| to provide

|D*Eg(xq) — D"g(yq)| < C Q) ™|IV*gllL~(@

< CIx -y V¥l (5.36)

We also know from Lemma 3.2.3
IX — Xol < dist(Xg, Q) < [x -V (5.37)
IXq — Yol < 20¥/nI(Q) < Clx—Y| (5.38)

It follows from (5.37) and the known bound qiD“Sgle((QC)o) that
€903 - E9(x0)| < ClIV¥glli~(eylx — Vi (5.39)

and from (5.38) thalyqo — y| < 25+/n|x—Y|. This is certainly less thafiso we may connect

y to yo with a chain of cubes and apply the’ estimate in Lemma 3.4.2 to conclude

IDg(y) — D*9(yo)| < ClIV¥glLe(oylx -y

This may be combined with (5.36), (5.39), and the fact y| < 1 to prove (5.35). m]

Using Lemma 5.4.2 we see that amyatisfying the conclusions of Proposition 5.4.1 has
locally Lipschitz derivatives of all orders less thiaand is thereforé&-times diferentiable
almost everywhere. A8Q has measure zero we conclude from Theorem 5.3.1¢at
WKP(R") and

IElwkp@ny < Clidlwer@)

so that& is a bounded linear operator on this space of functions. Proposition 5.4.1 shows
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that we can approximate (or weakly approximate in the gase o) any f € W<P(Q)

by suchg, and consequently th&f is in WXP(R") and satisfies the same estimate. This

completes the proof of Theorem 2.1.1.
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