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1 Introduction

There is a well developed theory (see [5, 9]) of analysis on certain types of fractal sets,
of which the Sierpinski Gasket (SG) is the simplest non-trivial example. In this the-
ory the fractals are viewed as limits of graphs, and notions analogous to the Dirichlet
energy and the Laplacian are constructed as renormalized limits of the corresponding
objects on the approximating graphs. The nature of this construction has naturally led
to extensive study of the eigenfunctions of this Laplacian, and to functional-analytic
notions based on the eigenfunctions. However, more recent work [7, 2] has exam-
ined other elementary functions on SG, including analogues of polynomials, analytic
functions and certain exponentials. A forthcoming paper [8] will extend this investiga-
tion to study smooth bump functions and a method for partitioning smooth functions
subordinate to an open cover.

In the present work we prove there are exponentially decaying generalized eigen-
functions on a blow-up ofSGwith boundary (which we denoteSG∞), proving:

Theorem 1.1. For eachλ < 0 and j ∈ N there is a smooth function Ejλ on SG∞ such

that for each j we have(∆ + λ)E j
λ = − jE j−1

λ . Moreover Ej
λ decays exponentially away

from the boundary point of SG∞ and satisfies|E j
λ| ≤ j!|λ|− j .

There are sufficiently many of these generalized eigenfunctions that they can be
used to prove a Borel-type theorem onSG∞, thereby answering a question asked in
[7, 2]. Using the termjet for the sequence of values of the natural derivatives at a
junction point ofSGour result may be summarized as:

Theorem 1.2. Given an arbitrary jet there is a smooth function on SG∞ with that jet
at the boundary point.

Our motivation for studying generalized eigenfunctions and for proving Theorem
1.1 was to prove Theorem 1.2. The structure of the paper reflects this motivation: apart
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from some background in Section 2 our first results (in Section 3) are those showing
that Theorem 1.2 follows from Theorem 1.1 and some known results about localized
eigenfunctions onSG. Section 4 is then devoted to the construction of the generalized
eigenfunctions and the proof of Theorem 1.1.
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2 Setting

We give a brief description of some parts of the theory of analysis on the Sierpinski
Gasket, more details of which are in [9]. For the general theory of analysis on fractals
the standard reference is [5].

SGand SG∞
The Sierpinski gasketSG is the unique non-empty compact set inR2 that is invariant
under the iterated function systemfi = 1

2(x + qi), i = 0,1,2 in the sense thatSG =⋃2
i=0 fi(SG), where the pointsqi are the vertices of an equilateral triangle. Form ∈ N

and (i1, i2, . . . , im) ∈ {0,1,2}m we call fi1 ◦ fi2 ◦ · · · ◦ fim(SG) acell of level m. The points
V0 = {qi : j = 0,1,2} are the boundary ofSGand we viewSGas the limit of graphs
Γm with vertices defined inductively byVm =

⋃2
i=0 fi(Vm−1) and edge relationx ∼m y if

x andy are in the samem-cell. The set of all vertices isV∞ =
⋃

m Vm and thejunction
pointsareV∞ \ V0. We letµ be the usual self-similar probability measure onSGwith
µ( fw(SG)) = 3−|w|, and also useµ to denote the obvious extension toSG∞.

The infinite blow-up ofSGwith boundary pointq0 is denotedSG∞ and defined by

SG∞ =
∞⋃

m=0

f ◦(−n)
0 (SG) (2.1)

This is the simplest blow-up ofSG; we could also consider arbitrary sequences of
blow-ups

⋃∞
m=1 f −1

i1
f −1
i2
· · · f −1

im
(SG), but all that have a boundary point necessarily have

{im} to be constant after somem0 and are isometric, so among those with boundary it
suffices to considerSG∞ (see Lemma 2.3 in [11]). The work in this paper will crucially
use that we are on a blow-up with boundary. We refer to [10, 11] for more information
about blow-ups and the Laplacian onSG∞.

Laplacian, derivatives and jets

Each graph approximationΓm of SGsupports a graph Laplacian∆m defined at non-
boundary pointsx ∈ Vm \ V0, and we define a Laplacian∆ at junction points ofSGas
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a renormalized limit of the graph Laplacians

∆mu(x) =
∑
y∼mx

(u(y) − u(x)) (2.2)

∆u(x) =
3
2

lim
m→∞

5m∆mu(x). (2.3)

A continuous functionu is in the domain of the Laplacian,u ∈ dom(∆), if there is a
continuousf such that the right side of (2.3) converges uniformly tof on V∞ \ V0.
Then we write∆u = f , extending∆u to all points ofSG by continuity. The factor
3/2 in (2.3) is for consistency with an alternative definition of the Laplacian using a
renormalized Dirichlet energy (see [5, 9]). We make the obvious definition of∆ku and
dom(∆k), and call a function smooth if it is in dom(∆∞) = ∩k dom(∆k). One additional
property of the Laplacian that we will use extensively is its scaling; it is immediate
from (2.3) that foru ∈ dom(∆)

∆(u ◦ f −1
0 ) = 5(∆u) ◦ f −1

0 on f0(SG) (2.4)

In addition to the Laplacian there are two derivatives at boundary points, the normal
derivative∂n and tangential derivative∂T , defined by

∂nu(qi) = lim
m→∞

(5
3

)m(
2u(qi) − u( f ◦mj (qi+1)) − u( f ◦mj (qi+2))

)
(2.5)

∂Tu(qi) = lim
m→∞

5m(
u( f ◦mj (q j+1)) − u( f ◦mj (q j+2))

)
(2.6)

(with qi+3 = qi). The former exists for anyu ∈ dom(∆) and the latter exists under
the additional assumption that∆u is Hölder continuous. Both may be localized to
boundary points of cells. The normal derivatives are much better understood than the
tangential derivatives, and have considerable application; for this paper their important
feature is thematching conditionfor the normal derivatives: ifu ∈ dom(∆) then at any
junction point of two cells the normal derivatives corresponding to these cells sum to
zero. Conversely, ifu is continuous and∆u = f on eachm-cell then∆u = f on SG if
and only if f is continuous and the matching condition holds at each point ofVm \ V0.

At a boundary pointq we will call the values of∆ku(q), ∂n∆
ku(q) and∂T∆

ku(q) the
Laplacian powers, normal derivatives and tangential derivatives, respectively. Thej-jet
of u at q is

(
u(q), ∂nu(q), ∂Tu(q), . . . ,∆ ju(q), ∂n∆

ju(q), ∂T∆
ju(q)

)
and the infinite jet is

the corresponding sequence of Laplacian powers and derivatives.

Spectral decimation

A useful feature of the Laplacian onSGandSG∞ is that restricting a Laplcaian eigen-
function Eλ to the graph approximationΓm produces an eigenfunction of the graph
Laplacian, with a shift in the eigenvalue. This phenomenon is known as spectral deci-
mation [4, 3, 11]. Specifically, if (∆ + λ)Eλ = 0 onSGor SG∞ then (∆m + λm)Eλ = 0
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onΓm, where

λm−1 = λm(5− λm) (2.7)

λ =
3
2

lim
m→∞

5mλm (2.8)

Eλ(yi) =
2Eλ(xi) + (4− λm)(Eλ(xi+1) + Eλ(xi+2))

(2− λm)(5− λm)
(2.9)

in which the pointsxi are the vertices of an (m− 1)-cell, and eachyi is the point from
Vm opposite toxi as shown in Figure 1. For proofs we refer to [3] or [9]; an explanation
of spectral decimation in a more general context is in [6].
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Figure 1: Pointsxi in Vm−1 andyi in Vm.

We will need one technical result about spectral decimation onSG that is well-
known but for which there does not appear to be a proof in the literature.

Lemma 2.1. For λ < 0 there is an entire functionΨ such thatλm = Ψ(5−mλ).

Proof. Considering (2.7) we define functions by 2φ±(ζ) = 5 ±
√

25− 4ζ, so thatλm

is one ofφ±(λm−1). Observe that ifλm−1 ≥ 0 thenλm ≥ 0, so from (2.8) andλ < 0
we must haveλm < 0 andλm = φ−(λm−1) for all m. The renormalized limitΦ(ζ) =
3
2 limm→∞ 5mφm

− (ζ) is analytic in a neighborhood of the origin and hasΦ′(0) = 3/2 by
virtue of the fact thatφ−(ζ) = ζ/5+O(ζ2) for sufficiently smallζ. It follows thatΦ has
an analytic inverseΨ(ζ) = Φ−1(ζ) =

∑∞
k=0αkζ

k in a neighborhood of 0.
Using (2.7) and (2.8) we findΨ(5−mλ) = λm for all sufficiently small 5−mλ. This

gives a recursion for the coefficientsαk, beginning withα0 = 0,α1 = 2/3 and continu-
ing according to

(5k − 5)αk = −

k−1∑
l=1

αlαk−l (2.10)

for k ≥ 2. An almost identical recursion appears for a different purpose in [7] (as
Equation 2.9 and in Theorem 2.7) and their argument shows that|αk| ≤ C(k!)− log 5/ log 2.
It follows immediately thatΨ is entire, whileλm = Ψ(5−mλ) is true by construction. �
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3 The Borel Theorem

In this section we prove Theorem 1.2 under the assumption of Theorem 1.1. First we
construct smooth functions with finitely many prescribed values of the Laplacian pow-
ers and tangential derivatives atq0 using known results about the existence of localized
eigenfunctions. Then we use Theorem 1.1 and linear algebra to prove that there are
smooth functions with finitely many prescribed normal derivatives. Finally we state a
precise version of Theorem 1.2 and show that its validity for finite jets gives the full
result by a scaling and convergence argument.

Localized eigenfunctions

A curious feature of many highly symmetric fractals is that their Laplacians have lo-
calized eigenfunctions. We will not need the details of the theory, for which we refer
to [1, 5], but only the existence of two specific eigenfunctionsu1 andu2 on SG. The
values ofu1 on V1 andu2 on V2 are shown in Figure 2. From the values shown we can
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Figure 2: The functionsu1 andu2.

computeu1 andu2 at any scale by the method of spectral decimation given in (2.7)-
(2.9) (with the caveat that foru1 the positive root must be taken at the first step of the
recursion (2.7)). What is important here is that the normal derivatives of bothui vanish
at the pointsq1 andq2, which we see from (2.5) and the antisymmetry of theui on the
cells f1(SG) and f2(SG). Since theui are eigenfunctions we then find that all of the
values∆kui and∂n∆

kui vanish atq1 andq2, and (2.4) shows the same is true forui ◦ f −m
0

at f m
0 (q1) and f m

0 (q2) for anym. It follows from the matching condition that

ui,m =

ui ◦ f −m
0 on f ◦m0 (SG)

0 otherwise

are smooth functions, and therefore are Laplacian eigenfunctions with eigenvalues
−5mλi . For obvious reasons they are calledlocalized eigenfunctions.

The jets of theui,m at q0 are easily computed. The eigenfunction equations∆ui =

−λiui give the higher order terms from the initial ones, so by simple algebra from (2.9)
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and some symmetry arguments

∆kui,m(q0) =

2(−λ1)k5km i = 1

0 i = 2

∂T∆
kui,m(q0) =

0 i = 1

2(−λ2)k5km i = 2

∂n∆
kui,m(q0) = 0 i = 1,2.

With these functions as building blocks we show that there is a smooth function with
finitely prescribed values of the Laplacian powers and tangential derivatives atq0, and
whose normal derivatives are all zero.

Lemma 3.1. For n ∈ N and valuesζ0, . . . , ζn andθ0, . . . , θn there is u∈ dom(∆∞) such
that∆ku(q0) = ζk, ∂n∆

ku(q0) = 0, and∂T∆
ku(q0) = θk for all 0 ≤ k ≤ n.

Proof. We observe that the vectors(
u1,m(q0),∆u1,m(q0), . . . ,∆nu1,m(q0)

)
= 2

(
1, (−λ1)5m, . . . , (−λ1)n5nm)

are linearly independent with respect tom. A similar result is true for the vector of
tangential derivatives ofu2,m. We may then obtain the desiredu as a linear combination
of the functionsui,m for 0 ≤ m≤ n by linear algebra. �

We remark that this method cannot be applied to prescribe values of the normal
derivatives atq0 using localized eigenfunctions. The structure of the localized eigen-
functions is well understood (see [9]) and non-zero normal derivatives can occur only
in “closed loops” circling the holes in the gasket. As each junction point corresponds
to a hole of precisely one size, our scaling arguments are not applicable. Similar ar-
guments are needed in Lemma 3.4 below, so any proof of Theorem 1.2 using only
localized eigenfunctions would need to be quite different from ours.

Generalized eigenfunctions and normal derivatives

The generalized eigenfunctions produced in Theorem 1.1 are a sufficiently rich class
that we can use a finite linear combination of them to match finitely many prescribed
normal derivatives atq0.

Lemma 3.2. For n ∈ N, λ < 0 and valuesη0, . . . , ηn there is u∈ dom(∆∞) which
is a finite linear combination of the Ejλ, 0 ≤ j ≤ n, and has∂n∆

ku(q0) = ηk for all
0 ≤ k ≤ n.

Proof. Let a j,k = ∂n∆
kE j
λ(q0). It clearly suffices to show that the matrix

[
a j,k

]n
j,k=0

is invertible, so we examine its determinant. Writing the generalized eigenfunction
equation (∆ + λ)E j

λ = − jE j−1
λ in terms ofa j,k we havea j,k + λa j,k−1 = − ja j−1,k−1,

which suggests a column operation on [a j,k]. For all columnsk ≥ 1 we replacea j,k

with − ja j−1,k−1, which makes the first row zero except in the first place simply because
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j = 0 on this row. For concreteness the result of this computation for the determinant
in the casen = 2 is given below.∣∣∣∣∣∣∣∣

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
a0,0 0 0
a1,0 −a0,0 −a0,1

a2,0 −2a1,0 −2a1,1

∣∣∣∣∣∣∣∣ = a0,0

∣∣∣∣∣∣ −a0,0 −a0,1

−2a1,0 −2a1,1

∣∣∣∣∣∣
This operation can be repeated inductively, because it shows

det
[
a j,k

]n

0
= a0,0 det

[
− ja j−1,k−1

]n

1
= a0,0 det

[
−( j + 1)a j,k

]n−1

0

and the only change to the matrix at each stage is to multiply each row by a constant
and reduce the degree, so the same column operations apply each time. We conclude
that det

[
a j,k

]n
0 = (−1)nn!an+1

0,0 , and is non-zero by (4.2) below. �

Corollary 3.3. Given values(ζk, ηk, θk) for 0 ≤ k ≤ n there is a finite linear combina-
tion u of localized eigenfunctions and generalized eigenfunctions such that∆ku(q0) =
ζk, ∂n∆

ku(q0) = ηk and∂T∆
ku(q0) = θk for all 0 ≤ k ≤ n.

Proof. Apply Lemma 3.2 to match the normal derivatives and then Lemma 3.1 to cor-
rect the Laplacian powers and tangential derivatives without affecting the values of the
normal derivatives. �

Proof of the Borel theorem

Corollary 3.3 supplies the natural building blocks for obtaining a smooth function with
any given jet atq0. Define for eachj functionsF j from which we will determine the
Laplacian powers,G j for the normal derivatives andH j for the tangential derivatives
by requiring that for all 0≤ k ≤ j

∆kF j(q0) = δ j,k ∂n∆
kF j(q0) = 0 ∂T∆

kF j(q0) = 0

∆kG j(q0) = 0 ∂n∆
kG j(q0) = δ j,k ∂T∆

kG j(q0) = 0

∆kH j(q0) = 0 ∂n∆
kH j(q0) = 0 ∂T∆

kH j(q0) = δ j,k

whereδ j,k is the Kronecker delta. The natural goal is to construct a smooth function
with prescribed (infinite) jet by using the terms of the jet as coefficients in a series with
functions like theF j , G j andH j . To make the series converge to a smooth function
we will need some estimates on these functions and their Laplacian powers. What we
know so far is that they are finite linear combinations of the localized eigenfunctions
ui,m with 0 ≤ m ≤ j and i = 1,2, and the generalized eigenfunctionsEk

λ for a fixedλ
and 0≤ k ≤ j. All of these functions and their Laplacian powers of order at mostj
are bounded: for the localized eigenfunctions this is obvious, while for the generalized
eigenfunctions it follows from the bound in Theorem 1.1 and the recursion (4.3). We
conclude that for eachj there is a constantC( j) such that for all 0≤ k ≤ j

|∆kF j | ≤ C( j) |∆kG j | ≤ C( j) |∆kH j | ≤ C( j)

and turn now to a scaling argument that allows us to make these as small as desired.
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Lemma 3.4. If m ∈ N then the functions

F j,m = 5− jmF j ◦ f −m
0 G j,m = 5− jmG j ◦ f −m

0 H j,m = 5− jmH j ◦ f −m
0

have the same j-jets at q0 as Fj , Gj and Hj respectively, but for0 ≤ k ≤ j they satisfy
the following estimates on SG∞

|∆kF j,m| ≤ C( j)5(k− j)m |∆kG j,m| ≤ C( j)5(k− j)m |∆kH j,m| ≤ C( j)5(k− j)m.

Proof. The result is an elementary consequence of the scaling property of the Lapla-
cian. By induction from (2.4) we see that∆k(u◦ f −m

0 ) = 5km(∆ku)◦ f −m
0 . Both statements

of the lemma are immediate consequences of this and the definitions (2.5) and (2.6) of
the normal and tangential derivatives. �

Proof of Theorem 1.2.We are supplied with values (ζk, ηk, θk) for k ∈ N and seek a
smooth functionu such that∆ku(q0) = ζk, ∂n∆

ku(q0) = ηk and∂T∆
ku(q0) = θk for all

k. This will be certainly be the case for the function

u =
∞∑
j=0

(
ζ jF j,mj + η jG j,mj + θ jH j,mj

)
(3.1)

provided only that applying any power of the Laplacian yields a uniformly convergent
series. However by Lemma 3.4 we may choose the sequencemj such that terms after
the j-th have only a small effect on the Laplacian powers of order at mostj. Specifi-
cally, given anyε > 0 we may makemj so large that for 0≤ k ≤ j − 1∣∣∣∣∆k(ζ j5

− jm j F j,mj + η j5
− jm jG j,mj + θ j5

− jm j H j,mj

)∣∣∣∣
≤ C( j)5(k− j)mj max

{
|ζk|, |ηk|, |θk| : 0 ≤ k ≤ j − 1

}
≤ ε2k− j

providing a bound on the tail of the series obtained by applying∆k to (3.1). We con-
clude thatu is smooth, that it has the desired jet atq0, and moreover that most of the
contribution to thek-th jet is from the firstk terms in the sum:

∣∣∣∆ku
∣∣∣ ≤ ε +C(k)

k∑
j=0

(
|ζ j | + |η j | + |θ j |

)
.

�

4 Generalized eigenfunctions with decay

In this section we prove Theorem 1.1, showing that there are exponentially decaying
generalized eigenfunctionsE j

λ of the Laplacian onSG∞. Our results depend on work
in [7], where the negative-eigenvalue eigenfunctions of−∆ were studied using spectral
decimation. Using notation from (2.7), the results we need may be summarized as:
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Proposition 4.1 ([7], Section 6). For eachλ < 0 there is an eigenfunction Eλ on
SG∞ which is symmetrical under the reflection that fixes q0 and exchanges q1 with q2,
and which satisfies(∆ + λ)Eλ = 0. There is an explicit formula for Eλ at the points
zm = f −m

0 (q1)

Eλ(zm) = 1−
λm

4
+
λm

4

∞∏
j=0

(
1+

4
2− λm− j

)
(4.1)

which is uniformly continuous on compacta in Vm, and Eλ is the limit of this on SG∞.
These functions have exponential decay|Eλ(zm)| = O(|λm|

−1) = O
(
2−2−m

)
as m→ −∞

and the normal derivative at q0 is given by

∂nEλ(q0) = λ
∞∏

m=0

(
1+

4
2− λ−m

) ∞∏
n=1

( 6− λn

6− 3λn

)
> 0. (4.2)

Our construction is motivated as follows. Formally settingE j
λ =

( d
dλ

) jEλ we find

that theE j
λ satisfy the generalized eigenfunction equation

(∆ + λ)E j
λ = − jE j−1

λ (4.3)

and we hope that the decay ofEλ will ensure exponential decay forE j
λ. This argument

is made rigorous by Lemma 4.2, but it will initially be simpler to construct theE j
λ from

(4.3) than by provingEλ can be differentiated with respect toλ.
Observe that onSG we can inductively obtain solutionsE j

λ of (4.3) for j ∈ N
starting withE0

λ = Eλ, merely becauseλ < 0 and the spectrum of∆ is positive. The
resulting functions are clearly in dom(∆∞), and depend on the boundary data we assign.
Guided by the formal idea thatE j

λ should be
( d

dλ

) jEλ we set

E j
λ(z) =

( d
dλ

) j
Eλ(z) (4.4)

at each of the three boundary pointsz= q0,q1,q2. The definition is legitimate because
λm = Ψ(5−mλ) andΨ is entire (Lemma 2.1), so the rapid growth ofλm ensures the
expression (4.1) is analytic with respect toλ.

Lemma 4.2. Using the supremum norm, the functions Ej
λ are differentiable with re-

spect toλ and d
dλE

j−1
λ = E j

λ.

Proof. We require a standard estimate (like Lemma 5.2.8 of [5]). Letu be in dom(∆)
and subtract the harmonic functionu0 with the same boundary values. It is well known
that then‖u − u0‖∞ ≤ c‖∆u‖2, and by the maximum principle we conclude‖u‖∞ ≤
c‖∆u‖2 + maxV0 |u|. Let λ < 0, and letκ1 > 0 be the first Dirichlet eigenvalue of−∆.
The spectral representation of∆ immediately shows

‖u‖∞ ≤ c
(
1+
|λ|

κ1

)∥∥∥(∆ + λ)u∥∥∥
2
+max

V0

|u|. (4.5)
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Now suppose inductively that the lemma is true up toj − 1. For the difference
betweenE j

λ and the Newton quotient for the derivative ofE j−1
λ we have

(∆ + λ)
(
E j
λ −

1
t
(
E j−1
λ+t − E j−1

λ

))
= − jE j−1

λ −
1
t

(
−( j − 1)E j−2

λ+t − tE j−1
λ+t + ( j − 1)E j−2

λ

)
=

(
E j−1
λ+t − E j−1

λ

)
+ ( j − 1)

1
t

(
E j−2
λ+t − E j−2

λ

)
− ( j − 1)E j−1

λ

→ 0 in L2(SG)

by induction. From (4.5) and the fact that the boundary data varies analytically withλ
we conclude ∥∥∥∥E j

λ −
1
t
(
E j−1
λ+t − E j−1

λ

)∥∥∥∥
∞
→ 0.

The same reasoning reduces the base case of the induction to showing‖Eλ+t−Eλ‖2→ 0,
which is a consequence of the fact (from Proposition 4.1) thatEλ is uniformly approx-
imated by the analytic function ofλ in (4.1). �

With this in hand we can describe the natural scaling behavior of theE j
λ. From

(2.4) we know thatE5λ = Eλ ◦ f −1
0 , whence onf0(SG)

E j
λ ◦ f −1

0 =
( d
dλ

) j
Eλ ◦ f −1

0 =
( d
dλ

) j
E5λ = 5 jE j

5λ

and therefore the natural definition ofE j
λ on f −1

0 (SG) is to setE j
λ = 5 jE j

5λ ◦ f0. Induc-
tively we let

E j
λ = 5 jnE5nλ ◦ f n

0 on f −n
0 (SG) (4.6)

for eachn ∈ N to extendE j
λ to all of SG∞. We remark that this gives the same result as

solving (4.3) onf −n
0 (SG) with boundary data (4.4) at the pointsz= q0, f −n

0 (q1), f −n
0 (z2).

Combining the above results we have proven the existence statements of Theorem
1.1. What remains to be proven is the content of the following lemma, which is regret-
tably but perhaps unavoidably technical.

Lemma 4.3. The generalized eigenfunctions satisfy|E j
λ| ≤ j!|λ|− j and have decay∣∣∣E j

λ(zm)
∣∣∣ = O

(
2−2−m)

as m→ −∞.

Proof. We first prove the decay. Recall that the recursion (2.7) guarantees|λm| ≥ C22−m

asm → −∞. Setβ j
m = (d/dλ) jλm. It is elementary to verify that|β j

m| = O(|λm|) as
m→ −∞ from the definition ofΨ and the recursion (2.10). Using the explicit formula
(4.1) we writeEλ(zm) = 1+ (Pm − λm)/4, where

Pm = λm

∞∏
n=0

(
1+

4
2− λm−n

)
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and defineS j
m by (d/dλ) jPm = PmS j

m. ExaminingS1
m we have

S1
m =
β1

m

λm
+

∞∑
n=0

4β1
m−n

(2− λm−n)(6− λm−n)

=
β1

m

λm
+

4β1
m

λ2
m
+O(λ−2

m ) +
∞∑

n=1

4β1
m−n

(2− λm−n)(6− λm−n)

=
β1

m

λm
+

4β1
m

λ2
m
+O(λ−2

m )

where the penultimate estimate uses the series expansion for 1/(2 − λm)(6 − λm), and
the final one uses the structure of the series. This series consists of terms which are
rational functions ofλm−n andβ1

m−n, and in which the degree of the denominator strictly
exceeds that of the numerator. The rapid growth of|λm| ensures this is bounded by a
multiple of the first term, which isO(|λm−1|

−1) = O(|λm|
−2).

We will call a series in which the terms are rational functions that depend on
λm−n, β

1
m−n, . . . , β

j
m for n ≥ 1, but must always have the degree of the denominator

to be strictly greater than the numerator, a good rational series or GRS. Notice that the
derivative of a GRS is a GRS, and that the product of a GRS with a GRS or a rational
function in which the numerator has the same or lesser degree than the denominator is
also a GRS. Our estimates onλm−n andβ1

m−n guarantee that any GRS sums to a value
which isO(|λm|

−2).
Using induction overj we see that the functionS j

m − β
j
m/λm − 4β j

m/λ
2
m is always a

GRS, so isO(|λm|
−2). Indeed, this is true forj = 1, and if we assume it to be true for

j − 1 and apply the recursionS j
m = S1

mS j−1
m + (dSj−1

m /dλ), then both

S1
mS j−1,m =

(
β1

m

λm
+

4β1
m

λ2
m
+GRS

) β j−1
m

λm
+

4β j−1
m

λ2
m
+GRS


=
β1

mβ
j−1
m

λ2
m
+

8β1
mβ

j−1
m

λ3
m
+GRS

and

dSj−1,m

dλ
=
β

j
m

λm
−
β

j−1
m β

1
m

λ2
m
+

4β j
m

λ2
m
−

8β j−1
m β

1
m

λ3
m
+GRS

so we may sum them to complete the induction. In particular we conclude that

4E j
λ(zm) =

d jPm

dλ j
− β

j
m

= PmS j
m − β

j
m

= Pm

S j
m −
β

j
m

λm
−

4β j
m

λ2
m

 + β j
m

λm
(Pm − λm + 4)+

4β j
m

λ2
m

(Pm − λm)

= O(|λm|
−1) = O(2−2−m

)
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where in the last step we used that the first bracketed term isO(|λm|
−2), and thatPm =

O(|λm|), (Pm−λm+4) = O(|λm|
−1) and (Pm−λm) = O(1), all of which are from the fact

that |Eλ(zm)| = O(|λm|
−1) (see Proposition 4.1) and the definition ofPm.

Now that we know|E j
λ| has exponential decay it must be the case that its maximum

occurs at an interior point of somef −m
0 (SG). It is well known (see [7] Proposition 2.11)

that E j
λ and∆E j

λ must have opposite signs at any local extreme point of|E j
λ|. Since

∆E j
λ = −λE

j
λ − jE j−1

λ andλ < 0 we find that sgn(∆E j
λ) = − sgn(E j

λ) implies |λE j
λ| ≤

| jE j−1
λ |. The bound onE j

λ follows by induction and the fact that|Eλ| ≤ |Eλ(q0)| = 1. �
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